4337: BJOI2015 树的同构】的更多相关文章

4337: BJOI2015 树的同构 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4337 Description 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树. 对于两个树T1和T2,如果能够把树T1的所有点重新标号,使得树T1和树T2完全相 同,那么这两个树是同构的.也就是说,它们具有相同的形态. 现在,给你M个有根树,请你…
题解: 树的同构的判定 有根树从根开始进行树hash 先把儿子的f进行排序 $f[i]=\sum_{j=1}^{k} { f[j]*prime[j]} +num[i]$(我没有仔细想这样是不是树是唯一的...反正过了) 无根树先找到重心再作为根 因为重心最多只有两个,复杂度仍旧O(n) 代码: #include <bits/stdc++.h> using namespace std; #define rint register int #define IL inline #define rep…
BZOJ 洛谷 \(Description\) 给定\(n\)棵无根树.对每棵树,输出与它同构的树的最小编号. \(n及每棵树的点数\leq 50\). \(Solution\) 对于一棵无根树,它的重心最多不超过两个. 所以从两个重心分别DFS,可以将无根树转为有根树.选Hash值较小或较大的做整棵树的Hash值好了. 然后可以用树哈希,或者括号序(直接用string)来表示每棵树. 对于每个点的每棵子树,可以对哈希值或字符串sort一下用最小表示法记录. //936kb 20ms #incl…
4337: BJOI2015 树的同构 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1023  Solved: 436[Submit][Status][Discuss] Description 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树. 对于两个树T1和T2,如果能够把树T1的所有点重新标号,使得树T1和树T2完全相 同,那么这两个树是同…
题目链接 bzoj4337: BJOI2015 树的同构 题解 树哈希的一种方法 对于每各节点的哈希值为hash[x] = hash[sonk[x]] * p[k]; p为素数表 代码 #include<cstdio> #include<cstring> #include<algorithm> inline int read() { int x = 0,f = 1; char c = getchar() ; while(c < '0' || c > '9')…
[BZOJ4337]BJOI2015 树的同构 Description 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树. 对于两个树T1和T2,如果能够把树T1的所有点重新标号,使得树T1和树T2完全相同,那么这两个树是同构的.也就是说,它们具有相同的形态. 现在,给你M个有根树,请你把它们按同构关系分成若干个等价类. Input 第一行,一个整数M. 接下来M行,每行包含若干个整数,表示一个树…
https://www.lydsy.com/JudgeOnline/problem.php?id=4337 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树. 对于两个树T1和T2,如果能够把树T1的所有点重新标号,使得树T1和树T2完全相 同,那么这两个树是同构的.也就是说,它们具有相同的形态. 现在,给你M个有根树,请你把它们按同构关系分成若干个等价类. Q:如何树哈希啊. A:网上也没有讲解…
嘟嘟嘟 判断树的同构的方法就是树上哈希. 如果树是一棵有根树,那么只要从根节点出发dfs,每一个节点的哈希值等于按传统方式算出来的子树的哈希值的结果.需要注意的是,算完子树的哈希值后要先排序再加起来,因为交换两棵子树对于判断同构不影响. 对于无根树,我们应该选一个点,满足树的标号改变后树的形态没有变.所以就选重心好了.重心可能有两个(一条边的两个端点上),所以分别求一遍哈希取max(min)即可. 结果这题卡我的哈希(可能是我太菜了),最后写成ret = ((ret * base) | t[i]…
Description 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树. 对于两个树T1和T2,如果能够把树T1的所有点重新标号,使得树T1和树T2完全相 同,那么这两个树是同构的.也就是说,它们具有相同的形态. 现在,给你M个有根树,请你把它们按同构关系分成若干个等价类. Input 第一行,一个整数M. 接下来M行,每行包含若干个整数,表示一个树.第一个整数N表示点数.接下来N 个整数,依次…
BZOJ 4337 简单记录一种树哈希的方法:以$x$为根的子树的哈希值为$\sum_{y \in son(x)}f_y*base_i$,$f_y$表示以$y$为根的树的哈希值,其中$i$表示$f_y$在若干个儿子中的排名,$base$是$rand$出的对一个质数取模之后的很大的数. 对于本题这样的情况,可以每一个结点都拿出来作为根计算一下,然后再把所有的结果排个序,如果两棵树同构那么排序之后得到的序列一定是一样的. 时间复杂度$O(n^3)$. Code: #include <cstdio>…