MySQL 树形索引结构 B树 B+树】的更多相关文章

MySQL 树形索引结构 B树 B+树   如何评估适合索引的数据结构 索引的本质是一种数据结构 内存只是临时存储,容量有限且容易丢失数据.因此我们需要将数据放在硬盘上. 在硬盘上进行查询时也就产生了硬盘的I/O操作,而硬盘的I/O存取消耗的时间要比读取内存大很多.因此数据查询的时间主要决定于I/O操作的次数. 每访问一次节点就需要对磁盘进行一次I/O操作.   树模型 二分查找的时间复杂度是O(log2n),是一种很高效的查询方式.在一系类树种使用二分查找的树有很多,但并不是所有树都适合作为索…
一.MySQL索引原理 1.索引背景 生活中随处可见索引的例子,如火车站的车次表.图书的目录等.它们的原理都是一样的,通过不断的缩小想要获得数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是我们总是通过同一种查找方式来锁定数据. 数据库也是一样,但显然要复杂许多,因为不仅面临着等值查询,还有范围查询(>.<.between.in).模糊查询(like).并集查询(or)等等.数据库应该选择怎么样的方式来应对所有的问题呢?我们回想字典的例子,能不能把数据分成段,然后分段查询…
回顾前文: 一文学会MySQL的explain工具 (同时再次强调,这几篇关于MySQL的探究都是基于5.7版本,相关总结与结论不一定适用于其他版本) MySQL官方文档中(https://dev.mysql.com/doc/refman/5.7/en/optimization-indexes.html)有这样一段描述: The best way to improve the performance of SELECT operations is to create indexes on one…
总结 1.InnoDB存储引擎的最小存储单元是页,页可以用于存放数据也可以用于存放键值+指针,在B+树中叶子节点存放数据,非叶子节点存放键值+指针. 2.索引组织表通过非叶子节点的二分查找法以及指针确定数据在哪个页中,进而在去数据页中查找到需要的数据: /81273236?utm_source=qq&utm_medium=social…
首先要明白索引(index)是在存储引擎(storage engine)层面实现的,而不是server层面.不是所有的存储引擎都支持所有的索引类型.即使多个存储引擎支持某一索引类型,它们的实现和行为也可能有所差别. MyISAM 和 InnoDB 存储引擎,都使用 B+Tree的数据结构,它相对与 B-Tree结构,所有的数据都存放在叶子节点上,且把叶子节点通过指针连接到一起,形成了一条数据链表,以加快相邻数据的检索效率. 一.先了解下 B-Tree 和 B+Tree 的区别   1.B-Tre…
目录 Mysql索引数据结构 二叉树 红黑树 B-Tree B+Tree Mysql索引数据结构 下面列举了常见的数据结构 二叉树 红黑树 Hash表 B-Tree(B树) Select * from t where t.col=5 我们在执行一条查询的Sql语句时候,在数据量比较大又不加索引的情况下,逐行查询并进行比对,每次需要从磁盘上查找,每行数据可能在磁盘不同的位置,数据比较靠后的话,一千万数据可能要比对几百万,很耗费资源. Mysql衡量查询效率的就是磁盘IO次数,那么Mysql中应该采…
MySQL 索引结构 hash 有序数组 除了最常见的树形索引结构,Hash索引也有它的独到之处.   Hash算法 Hash本身是一种函数,又被称为散列函数. 它的思路很简单:将key放在数组里,用一个hash算法把不同的key转换成一个确定的value,然后放在这个数组的指定位置 相同的输入永远可以得到相同的输出 具体的算法有MD5.SHA1.SHA2.SHA3 Hash冲突:不同的key得到了相同的value 当出现Hash冲突,可以在冲突发生的位置跟一个链表   Hash索引 索引使用的…
B+树在数据库中的应用 { 为什么使用B+树?言简意赅,就是因为: 1.文件很大,不可能全部存储在内存中,故要存储到磁盘上 2.索引的结构组织要尽量减少查找过程中磁盘I/O的存取次数(为什么使用B-/+Tree,还跟磁盘存取原理有关.) 3.局部性原理与磁盘预读,预读的长度一般为页(page)的整倍数,(在许多操作系统中,页得大小通常为4k) 4.数据库系统巧妙利用了磁盘预读原理,将一个节点的大小设为等于一个页,这样每个节点只需要一次I/O就可以完全载入,(由于节点中有两个数组,所以地址连续).…
前言 Hello我又来了,快年底了,作为一个有抱负的码农,我想给自己攒一个年终总结.自上上篇写了手动搭建Redis集群和MySQL主从同步(非Docker)和上篇写了动手实现MySQL读写分离and故障转移之后,索性这次把数据库中最核心的也是最难搞懂的内容,也就是索引,分享给大家. 这篇博客我会谈谈对于索引结构我自己的看法,以及分享如何从零开始一层一层向上最终理解索引结构. 从一个简单的表开始 create table user( id int primary key, age int, hei…
前言 Hello我又来了,快年底了,作为一个有抱负的码农,我想给自己攒一个年终总结.索性这次把数据库中最核心的也是最难搞懂的内容,也就是索引,分享给大家. 这篇博客我会谈谈对于索引结构我自己的看法,以及分享如何从零开始一层一层向上最终理解索引结构,书接上文. 多页模式 在多页模式下,MySQL终于可以完成多数据的存储了,就是采用开辟新页的方式,将多条数据放在不同的页中,然后同样采用链表的数据结构,将每一页连接起来.那么可以思考第四个问题:多页情况下是否对查询效率有影响呢? 多页模式对于查询效率的…
MySQL存储引擎MyISAM和InnoDB底层索引结构 深入理解MySQL索引底层数据结构与算法 (各种索引结构优缺点) Myisam和Innodb索引实现的不同(存储结构) 存储引擎作用于什么对象 存储引擎是作用在表上的,而不是数据库. MyISAM和InnoDB对索引和数据的存储在磁盘上是如何体现的 先来看下面创建的两张表信息,role表使用的存储引擎是MyISAM,而user使用的是InnoDB: 再来看下两张表在磁盘中的索引文件和数据文件: 1. role表有三个文件,对应如下: ro…
1.定义 索引是一种数据结果,帮助提高获取数据的速度 为了提高查找速度,有很多查询优化算法.但是每种查找算法都只能应用于特定数据结构之上. 索引就是数据库创建的满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据 2.目前大部分数据库系统及文件系统都采用B Tree或其变种B+Tree作为索引结构 3.为什么使用B Tree(B+Tree) 红黑树也可用来实现索引,但是文件系统及数据库系统普遍采用B/+Tree,何也? 一般来说,索引本身也很大,不可能全存内存,往往以索引文件的形式…
从一个简单的表开始 create table user( id int primary key, age int, height int, weight int, name varchar(32) )engine = innoDb; 相信只要入门数据库的同学都可以理解这个语句,我们也将从这个最简单的表开始,一步步地理解MySQL的索引结构. 首先,我们往这个表中插入一些数据. INSERT INTO user(id,age,height,weight,name)VALUES(2,1,2,7,'小…
索性这次把数据库中最核心的也是最难搞懂的内容,也就是索引,分享给大家. 这篇博客我会谈谈对于索引结构我自己的看法,以及分享如何从零开始一层一层向上最终理解索引结构. 从一个简单的表开始 create table user( id int primary key, age int, height int, weight int, name varchar(32))engine = innoDb; 相信只要入门数据库的同学都可以理解这个语句,我们也将从这个最简单的表开始,一步步地理解MySQL的索引…
--------------------------------------------------------------------------------堕落的状态,无疑是慢性自杀.想想自己为什么学这个,想想初心. -------------------------------------------------------------------------------------------------------------------------------------------…
一 介绍 为何要有索引? 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语句的优化显然是重中之重.说起加速查询,就不得不提到索引了. 什么是索引? 索引在MySQL中也叫做“键”,是存储引擎用于快速找到记录的一种数据结构.索引对于良好的性能非常关键,尤其是当表中的数据量越来越大时,索引对于性能的影响愈发重要.索引优化应该是对查询性能优化最有效的手段了.索引能够轻易将查询性能…
一.索引的本质 MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构.提取句子主干,就可以得到索引的本质:索引是数据结构. 我们知道,数据库查询是数据库的最主要功能之一.我们都希望查询数据的速度能尽可能的快,因此数据库系统的设计者会从查询算法的角度进行优化.最基本的查询算法当然是顺序查找(linear search),这种复杂度为O(n)的算法在数据量很大时显然是糟糕的,好在计算机科学的发展提供了很多更优秀的查找算法,例如二分查找(binary search).…
1:Mysql索引是什么 mysql索引: 是一种帮助mysql高效的获取数据的数据结构,这些数据结构以某种方式引用数据,这种结构就是索引.可简单理解为排好序的快速查找数据结构.如果要查“mysql”这个单词,我们肯定需要定位到m字母,然后从下往下找到y字母,再找到剩下的sql. 1.1:索引分类 单值索引:一个索引包含1个列 create index idx_XX on table(f1) 一个表可以建多个. 唯一索引: 索引列的值必须唯一,但允许有空值 create unique index…
延迟关联:通过使用覆盖索引查询返回需要的主键,再根据主键关联原表获得需要的数据.   为什innodb的索引叶子节点存的是主键,而不是像myisam一样存数据的物理地址指针? 如果存的是物理地址指针不就不需要二次查找了吗,根据myisam和innodb数据存储方式的差异去想 Imyisam索引文件和数据文件是分离的,索引文件仅保存数据记录的地址. 而在InnoDB中,表数据文件本身就是按B+Tree组织的一个索引结构,这棵树的叶节点data域保存了完整的数据记录. 这个索引的key是数据表的主键…
MySQL数据库索引总结使用索引的原由数据结构Hash.平衡二叉树.B树.B+树区别机械硬盘.固态硬盘区别Myisam与Innodb B+树的区别MySQL中的索引什么数据结构B+树中的节点到底存放多少 为什么需要使用索引?MySQL官方对索引的定义为:索引(Index)是帮助 MySQL 高效获取数据的数据结构.白话文:索引就像书的目录一样可以非常快速的定位到书的页码.如果向mysql发出一条sql语句请求,查询的字段没有创建索引的话,可能会导致全表扫描,这样的话查询效率非常低. 全表扫描:…
一 介绍 为何要有索引? 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语句的优化显然是重中之重.说起加速查询,就不得不提到索引了. 什么是索引? 索引在MySQL中也叫做“键”,是存储引擎用于快速找到记录的一种数据结构.索引对于良好的性能非常关键,尤其是当表中的数据量越来越大时,索引对于性能的影响愈发重要.索引优化应该是对查询性能优化最有效的手段了.索引能够轻易将查询性能…
一 介绍 为何要有索引? 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语句的优化显然是重中之重.说起加速查询,就不得不提到索引了. 什么是索引? 索引在MySQL中也叫做“键”,是存储引擎用于快速找到记录的一种数据结构.索引对于良好的性能非常关键,尤其是当表中的数据量越来越大时,索引对于性能的影响愈发重要.索引优化应该是对查询性能优化最有效的手段了.索引能够轻易将查询性能…
一 介绍 为何要有索引? 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语句的优化显然是重中之重.说起加速查询,就不得不提到索引了. 什么是索引? 索引在MySQL中也叫做“键”,是存储引擎用于快速找到记录的一种数据结构.索引对于良好的性能非常关键,尤其是当表中的数据量越来越大时,索引对于性能的影响愈发重要.索引优化应该是对查询性能优化最有效的手段了.索引能够轻易将查询性能…
这一篇文章本来应该是放在 mysql 高性能日记中的,并且其优化程度并不高,但考虑到其特殊性和原理(索引结构也在这里稍微讲一下) 一,mysql 索引结构 (B.B+树) 要问到 mysql 的索引用到什么数据结构,我相信大部分都能回答出来,没错,就是 B+ 树.那再问为什么要用 B+ 树呢,与红黑树,hash 表又分别有什么区别呢,问到这里可能就难住了一些没思考过的轻度玩家了.这里简单描述一下 B 树与红黑树的区别,有数据结构基础的同学应该可以讲出来,红黑树是平衡二叉树的一个变种,利用红黑树的…
1. 索引的本质 MySQL官方对索引的定义为:索引是帮助MySQL高效获取数据的数据结构. 数据库查询是数据库的最主要功能之一.我们都希望查询数据的速度尽可能的快,因此 数据库系统的设计者会从查询算法的角度进行优化.最基本的查询算法是顺序查找(liner search),这种复杂度为o(n)的算法在数据量大时,速度很慢.但是我们有更优秀的查找算法,例如二分查找(binary search).二叉树查找(binary tree search)等.如果稍微分析一下会发现,每种查找算法都只能用于特定…
目录 索引 前言 是什么 B树 B+树 B树和B+树结构上异同 有什么用 怎么用 索引 前言 总所周知,数据库查询是数据库的最主要功能之一.我们都希望查询数据的速度能尽可能的快.而支撑这一快速的背后就是索引:MySQL索引问题也是大家经常遇到的面试题模块,想想自己也没有去系统地总结过索引,所以记录这篇文章来讲下索引.下面还是按照是什么->有什么用->怎么用->来写 是什么 往往大家第一时间提到索引,可能就会说到它是一种数据结构,来提高查询效率的数据结构,用在常用来查询的字段上.但是原理是…
一.SQL分析 性能下降.SQL慢.执行时间长.等待时间长 查询语句写的差 索引失效关联查询太多join(设计缺陷) 单值索引:在user表中给name属性创建索引,create index idx_name on user(name); 复合索引:在user表中给name.email属性创建索引,create index idx_name_email on user(name,email); 服务器调优及各个参数设置(缓冲.线程数等) 二,join查询 1,SQL执行顺序 a)手写SQL b)…
MySQL Hash索引和B-Tree索引的区别究竟在哪里呢?相信很多人都有这样的疑问,下文对两者的区别进行了详细的分析,供您参考. MySQL Hash索引结构的特殊性,其检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引. 可 能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引…
一个问题? InnoDB一棵B+树可以存放多少行数据?这个问题的简单回答是:约2千万 为什么是这么多呢? 因为这是可以算出来的,要搞清楚这个问题,我们先从InnoDB索引数据结构.数据组织方式说起. 我们都知道计算机在存储数据的时候,有最小存储单元,这就好比我们今天进行现金的流通最小单位是一毛. 在计算机中磁盘存储数据最小单元是扇区,一个扇区的大小是512字节,而文件系统(例如XFS/EXT4)他的最小单元是块,一个块的大小是4k 而对于我们的InnoDB存储引擎也有自己的最小储存单元——页(P…
B-树 B-树,这里的 B 表示 balance( 平衡的意思),B-树是一种多路自平衡的搜索树它类似普通的平衡二叉树,不同的一点是B-树允许每个节点有更多的子节点.下图是 B-树的简化图. B-树有如下特点: 所有键值分布在整颗树中: 任何一个关键字出现且只出现在一个结点中: 搜索有可能在非叶子结点结束: 在关键字全集内做一次查找,性能逼近二分查找: B+ 树 B+树是B-树的变体,也是一种多路搜索树, 它与 B- 树的不同之处在于: 所有关键字存储在叶子节点出现,内部节点(非叶子节点并不存储…