这一节我们主要讲述如何使用预训练模型.Ipython notebook链接在这里. 模型下载 你可以去Model Zoo下载预训练好的模型,或者使用Caffe2的models.download模块获取预训练的模型.caffe2.python.models.download需要模型的名字所谓参数.你可以去看看有什么模型可用,然后替换下面代码中的squeezenet. python -m caffe2.python.models.download -i squeezenet 译者注:如果不明白为什么…
什么是预训练模型 简单来说,预训练模型(pre-trained model)是前人为了解决类似问题所创造出来的模型.你在解决问题的时候,不用从零开始训练一个新模型,可以从在类似问题中训练过的模型入手. 比如说,你如果想做一辆自动驾驶汽车,可以花数年时间从零开始构建一个性能优良的图像识别算法,也可以从Google在ImageNet数据集上训练得到的Inception model(一个预训练模型)起步,来识别图像. 一个预训练模型可能对于你的应用中并不是100%的准确对口,但是它可以为你节省大量功夫…
Keras的预训练模型地址:https://github.com/fchollet/deep-learning-models/releases 一个稍微讲究一点的办法是,利用在大规模数据集上预训练好的网络.这样的网络在多数的计算机视觉问题上都能取得不错的特征,利用这样的特征可以让我们获得更高的准确率. 1,使用预训练网络的 bottleneck 特征:一分钟达到90%的正确率 我们将使用VGG-16网络,该网络在 ImageNet数据集上进行训练,这个模型我们之前提到过了.因为 ImageNet…
本节主要学习Keras的应用模块 Application提供的带有预训练权重的模型,这些模型可以用来进行预测,特征提取和 finetune,上一篇文章我们使用了VGG16进行特征提取和微调,下面尝试一下其他的模型. 模型的预训练权重将下载到 ~/.keras/models/ 并在载入模型时自动载入,当然我们也可以下载到自己的目录下,但是需要去源码修改路径. 模型的官方下载路径:https://github.com/fchollet/deep-learning-models/releases Te…
一.运行样例 官网链接:https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb  但是一直有问题,没有运行起来,所以先使用一个别人写好的代码 上一个在ubuntu下可用的代码链接:https://gitee.com/bubbleit/JianDanWuTiShiBie  使用python2运行,python3可能会有问题 该代码由https…
tensorflow 预训练模型列表 https://github.com/tensorflow/models/tree/master/research/slim Pre-trained Models Neural nets work best when they have many parameters, making them powerful function approximators. However, this means they must be trained on very l…
先上开源地址: https://github.com/huggingface/pytorch-transformers#quick-tour 官网: https://huggingface.co/pytorch-transformers/index.html PyTorch-Transformers(正式名称为 pytorch-pretrained-bert)是一个用于自然语言处理(NLP)的最先进的预训练模型库. 该库目前包含下列模型的 PyTorch 实现.预训练模型权重.使用脚本和下列模型…
Paddle预训练模型应用工具PaddleHub 本文主要介绍如何使用飞桨预训练模型管理工具PaddleHub,快速体验模型以及实现迁移学习.建议使用GPU环境运行相关程序,可以在启动环境时,如下图所示选择"高级版"环境即可. 如果没有算力卡资源可以点击链接申请. 概述 首先提个问题,请问十行Python代码能干什么?有人说可以做个小日历.做个应答机器人等等,用十行代码可以成功训练出深度学习模型,飞桨的PaddleHub可以轻松实现. PaddleHub是飞桨生态下的预训练模型的管理工…
1. 模型下载 import re import os import glob import torch from torch.hub import download_url_to_file from torch.hub import urlparse import torchvision.models as models def download_model(url, dst_path): parts = urlparse(url) filename = os.path.basename(pa…
1. BERT简介 Transformer架构的出现,是NLP界的一个重要的里程碑.它激发了很多基于此架构的模型,其中一个非常重要的模型就是BERT. BERT的全称是Bidirectional Encoder Representation from Transformer,如名称所示,BERT仅使用了Transformer架构的Encoder部分.BERT自2018年由谷歌发布后,在多种NLP任务中(例如QA.文本生成.情感分析等等)都实现了更好的结果. BERT的效果如此优异,其中一个主要原…