tf.argmax()函数作用】的更多相关文章

tf.argmax()函数原型: def argmax(input, axis=None, name=None, dimension=None, output_type=dtypes.int64) 作用是返回每列/行的最大值的索引. input是一个张量, axis是0或1,0返回各列最大值索引,1返回各行最大值索引. 其他3个参数不常用,常用写法是 a = tf.argmax(tensor, 1). import tensorflow as tf sess = tf.InteractiveSe…
tf.argmax(input, axis=None, name=None, dimension=None) 此函数是对矩阵按行或列计算最大值   参数 input:输入Tensor axis:0表示按列,1表示按行 name:名称 dimension:和axis功能一样,默认axis取值优先.新加的字段 返回:Tensor  一般是行或列的最大值下标向量   例:…
转载请注明出处:http://www.cnblogs.com/willnote/p/6758953.html 官方API定义 tf.argmax(input, axis=None, name=None, dimension=None) Returns the index with the largest value across axes of a tensor. Args: input: A Tensor. Must be one of the following types: float32…
关于tensorflow里多维数组(主要是四维)的组织形式之前一直没弄懂,最近遇到相关问题,算是搞清楚了一些东西,特别记下来,免得自己又遗忘了. 三维形式能很简单的脑补出来三维的形状,不再赘述. 之前一直纠结四维的时候数据是怎样填充的.特别是遇到深度学习的时候输入都是[batch,height,width,channel],这种四维的张量的时候,是怎样个数据的形状. 先看代码: prediction2 = tf.constant([1,2,3,4,5,6,7,8,9,13,14,14,15,1,…
tf.argmax(input, dimension, name=None) 参数: input:输入数据 dimension:按某维度查找. dimension=0:按列查找: dimension=1:按行查找: 返回: 最大值的下标 a = tf.constant([1.,2.,3.,0.,9.,]) b = tf.constant([[1,2,3],[3,2,1],[4,5,6],[6,5,4]]) with tf.Session() as sess: sess.run(tf.argmax…
1.返回值 vector为向量,返回行或列的最大值的索引号: vector为矩阵,返回值是向量,返回每行或每列的最大值的索引号. 2.参数 vector为向量或者矩阵 axis = 0 或1 0:返回vector中每列的最大值的索引号 1:返回vector中每行的最大索引号 3.例子 import numpy as npimport tensorflow as tfa=np.array([[1,2,3]])with tf.Session() as sess:    print(sess.run(…
[Tensorflow] tf.equal(tf.argmax(y, 1),tf.argmax(y_, 1))用法 作用:输出正确的预测结果利用tf.argmax()按行求出真实值y_.预测值y最大值的下标,用tf.equal()求出真实值和预测值相等的数量,也就是预测结果正确的数量,tf.argmax()和tf.equal()一般是结合着用. 具体讲解:correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) 1.tf.e…
referrence: 莫烦视频 先介绍几个函数 1.tf.cast() 英文解释: 也就是说cast的直译,类似于映射,映射到一个你制定的类型. 2.tf.argmax 原型: 含义:返回最大值所在的坐标.(谁给翻译下最后一句???) ps:谁给解释下axis最后一句话? 例子: 3.tf.reduce_mean() 原型: 含义:一句话来说就是对制定的reduction_index进行均值计算. 注意,reduction_indices为0时,是算的不同的[]的同一个位置上的均值 为1是是算…
一个tensorflow图由以下几部分组成: 占位符变量(Placeholder)用来改变图的输入. 模型变量(Model)将会被优化,使得模型表现得更好. 模型本质上就是一些数学函数,它根据Placeholder和模型的输入变量来计算一些输出. 一个cost函数度量用来指导变量的优化. 一个优化策略会更新模型的变量.(梯度下降优化器) 四则运算: +-*/ ** 基本运算 tf.add(x,y,name) tf.subtract(x,y,name) tf.multiply(x,y,name)…
1. tf.reduce_mean(a) : 求平均值 2. tf.truncated_normal([3,2],stddev=0.1) : 从正态分布中输出随机值,标准差为0,1,构造矩阵为3*2的 3. tf.argmax(vector, 1):返回的是vector中的最大值的索引号,如果vector是一个向量,那就返回一个值,如果是一个矩阵,那就返回一个向量,这个向量的每一个维度都是相对应矩阵行的最大值元素的索引号. A = [[1,3,4,5,6]]B = [[1,3,4], [2,4,…