之前一直在讲机器为什么能够学习,从这节课开始讲一些基本的机器学习算法,也就是机器如何学习. 这节课讲的是线性回归,从使Ein最小化出发来,介绍了 Hat Matrix,要理解其中的几何意义.最后对比了linear regression 和 binary classification,并说明了linear regression 为什么可以用来做 binary classification .整节课的内容可以用下面的图来表示: 与其他课程的线性回归相比,这门课要更加理论,看完后对这门课有了更深的理解…
最近开始学习Coursera上的斯坦福机器学习视频,我是刚刚接触机器学习,对此比较感兴趣:准备将我的学习笔记写下来, 作为我每天学习的签到吧,也希望和各位朋友交流学习. 这一系列的博客,我会不定期的更新,希望大家多多批评指正. Supervised Learning(监督学习) 在监督学习中,我们的数据集包括了算法的输出结果,比如具体的类别(分类问题)或数值(回归问题),输入和输出存在某种对应关系. 监督学习大致可分为回归(classification)和分类(regression). 回归:对…
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 2. 多变量线性回归 Linear Regression with Multiple Variables 1 多特征值(多变量) Multiple Features(Variables) 首先,举例说明了多特征值(多变量)的情况.在下图的例子中,…
线性回归(linear regression)实践篇 之前一段时间在coursera看了Andrew ng的机器学习的课程,感觉还不错,算是入门了. 这次打算以该课程的作业为主线,对机器学习基本知识做一下总结.小弟才学疏浅,如有错误.敬请指导. 问题原描写叙述: you will implement linear regression with one variable to predict prots for a food truck. Suppose you are the CEO of a…
TensorFlow是咱们机器学习领域非常常用的一个组件,它在数据处理,模型建立,模型验证等等关于机器学习方面的领域都有很好的表现,前面的一节我已经简单介绍了一下TensorFlow里面基础的数据结构即:Tensor和Dataset: 这里咱们开始介绍TensorFlow的建模过程以及验证模型的一些简单方法.其实无论是sklearn还是TensorFlow,他们的模型建立过程都是相似的,都是经历columns类型声明,模型定义,数据训练,validation等等几个步骤.前面的几节内容我已经简单…
Question 1 Consider the problem of predicting how well a student does in her second year of college/university, given how well she did in her first year. Specifically, let x be equal to the number of “A” grades (including A-. A and A+ grades) that a…
Gradient Descent for Multiple Variables [1]多变量线性模型  代价函数 Answer:AB [2]Feature Scaling 特征缩放 Answer:D [3]学习速率 α Answer: B,因为第一个比第二个下降的快.第三个上升说明α太大 [4]Mean Normalization Answer:C [5]Normal Equation Answer:D Linear Regression with Multiple Variables [1]…
背景:实现一个线性回归模型,根据这个模型去预测一个水库的水位变化而流出的水量. 加载数据集ex5.data1后,数据集分为三部分: 1,训练集(training set)X与y: 2,交叉验证集(cross validation)Xval, yval: 3,测试集(test set): Xtest, ytest. 一:正则化线性回归(Regularized Linear Regression) 1,可视化训练集,如下图所示: 通过可视化数据,接下来我们使用线性回归去拟合这些数据集. 2,正则化线…
作业文件: machine-learning-ex5 1. 正则化线性回归 在本次练习的前半部分,我们将会正则化的线性回归模型来利用水库中水位的变化预测流出大坝的水量,后半部分我们对调试的学习算法进行了诊断,并检查了偏差和方差的影响. 1.1 可视化数据集 x表示水位变化,y表示水流量.整个数据集分成三个部分 模型的训练集,用来从X,y中学习参数. 交叉验证集,从Xval, yval中决定正则化参数 测试集,用来预测的样本,从数据集为 Xtest, ytest. 绘制的图像如图1 1.2 正则化…
线性回归假设: 代价函数------均方误差: 最小化样本内代价函数: 只有满秩方阵才有逆矩阵. 线性回归算法流程: 线性回归算法是隐式迭代的. 线性回归算法泛化可能的保证: 根据矩阵的迹的性质:trace(A+B)=trace(A)+trace(B), trace(I-H) =trace(IN*N)-trace(H) =N-trace(XX+) =N-trace(XTX(XTX)-1) =N-trace(I(d+1)*(d+1)) =N-(d+1), I-H这种转换的物理意义: 原来有一个有N…