首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
因子分析和PCA总结
】的更多相关文章
因子分析和PCA总结
因子分析和PCA 定义 因子分析就是数据降维工具.从一组相关变量中删除冗余或重复,把相关的变量放在一个因子中,实在不相关的因子有可能被删掉.用一组较小的“派生”变量表示相关变量,这个派生就是新的因子.形成彼此相对独立的因素,就是说新的因子彼此之间正交. 应用 筛选变量. 步骤 3.1计算所有变量的相关矩阵 3.2要素提取,仅在此处需要使用PCA 3.3要素轮换 3.4就基本因素的数量作出最后决定 3.1计算所有变量的相关矩阵 构建数据矩阵,该数据矩阵是相关矩阵(矩阵里面全是相关系数),PCA…
PCA分析和因子分析
#由此说明使用prcomp函数时,必须使用标准化过的原始数据.如果使用没有标准化的raw数据(不是相关系数矩阵或者协方差矩阵),必须将参数scale. = T <result>$sdev #表示标准差,意思是 <result>$sdev[1] = sqrt(var(<result>$x)) <result>$rotation #表示的是特征向量矩阵,也可以由eigen(<输入的原数据>)$vector 得到 <result>$x #表…
PRML读书会第十二章 Continuous Latent Variables(PCA,Principal Component Analysis,PPCA,核PCA,Autoencoder,非线性流形)
主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:00:49 我今天讲PRML的第十二章,连续隐变量.既然有连续隐变量,一定也有离散隐变量,那么离散隐变量是什么?我们可能还记得之前尼采兄讲过的9.2节的高斯混合模型.它有一个K维二值隐变量z,不仅只能取0-1两个值,而且K维中只能有1维为1.其他维必须为0,表示我们观察到的x属于K类中的哪一类.显然,这里的隐变量z就是个离散隐变量.不过我们容易想到,隐变量未必像kmeans或GMM这种聚类算法那样,非此…
降维PCA技术
降维技术使得数据变得更易使用,并且它们往往能够去除数据中的噪声,使得机器学习任务往往更加精确. 降维往往作为预处理步骤,在数据应用到其它算法之前清洗数据.有很多技术可以用于数据降维,在这些技术中,独立成分分析(Independent Component Analysis, ICA).因子分析(Factor Analysis).主成分分析(Principal Component Analysis, PCA)比较流行,其中又以主成分分析应用最广泛. PCA可以从数据中识别其主要特征,它是通过沿着数据…
PCA理论与实践
PCA作用: 降维,PCA试图在力保数据信息丢失最少的原则下,用较少的综合变量代替原本较多的变量,而且综合变量间互不相关,减少冗余以及尽量消除噪声. PCA数学原理: 设 是维向量 想经过线性变换得到其中F的各行向量相互独立,即 由于是实对称矩阵,因此存在正交矩阵A满足以上关系,令,即得,得 只根据第一列得出的方程为: 即 即 显然,是相关系数矩阵的特征值,是相应的特征向量. 根据第二列.第三列等可以得到类似的方程,于是 是方程 的p个根,为特征方程的特征根,是其特征向量的分量. PCA…
《机器学习实战》学习笔记——第13章 PCA
1. 降维技术 1.1 降维的必要性 1. 多重共线性--预测变量之间相互关联.多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯.2. 高维空间本身具有稀疏性.一维正态分布有68%的值落于正负标准差之间,而在十维空间上只有0.02%. 3. 过多的变量会妨碍查找规律的建立. 4. 仅在变量层面上分析可能会忽略变量之间的潜在联系.例如几个预测变量可能落入仅反映数据某一方面特征的一个组内. 1. 2 降维的目的: 1. 减少预测变量的个数 2. 确保这些变量是相互独立的 3. 提供一个框架来…
Machine Learning in Action – PCA和SVD
降维技术, 首先举的例子觉得很好,因为不知不觉中天天都在做着降维的工作 对于显示器显示一个图片是通过像素点0,1,比如对于分辨率1024×768的显示器,就需要1024×768个像素点的0,1来表示,这里每个像素点都是一维,即是个1024×768维的数据.而其实眼睛真正看到的只是一副二维的图片,这里眼睛其实在不知不觉中做了降维的工作,把1024×768维的数据降到2维 降维的好处,显而易见,数据更易于显示和使用,去噪音,减少计算量,更容易理解数据 主流的降维技术,包含: 主成分分析,princi…
Andrew Ng机器学习公开课笔记–Principal Components Analysis (PCA)
网易公开课,第14, 15课 notes,10 之前谈到的factor analysis,用EM算法找到潜在的因子变量,以达到降维的目的 这里介绍的是另外一种降维的方法,Principal Components Analysis (PCA), 比Factor Analysis更为直接,计算也简单些 参考,A Tutorial on Principal Component Analysis, Jonathon Shlens 主成分分析基于, 在现实中,对于高维的数据,其中有很多维都是扰动噪音,…
数字图像处理-----主成成分分析PCA
主成分分析PCA 降维的必要性 1.多重共线性--预测变量之间相互关联.多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯. 2.高维空间本身具有稀疏性.一维正态分布有68%的值落于正负标准差之间,而在十维空间上只有0.02%. 3.过多的变量会妨碍查找规律的建立. 4.仅在变量层面上分析可能会忽略变量之间的潜在联系.例如几个预测变量可能落入仅反映数据某一方面特征的一个组内. 降维的目的: 1.减少预测变量的个数 2.确保这些变量是相互独立的 3.提供一个框架来解释结果 降维的方法有:主成…
主成份分析PCA
Data Mining 主成分分析PCA 降维的必要性 1.多重共线性--预测变量之间相互关联.多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯. 2.高维空间本身具有稀疏性.一维正态分布有68%的值落于正负标准差之间,而在十维空间上只有0.02%. 3.过多的变量会妨碍查找规律的建立. 4.仅在变量层面上分析可能会忽略变量之间的潜在联系.例如几个预测变量可能落入仅反映数据某一方面特征的一个组内. 降维的目的: 1.减少预测变量的个数 2.确保这些变量是相互独立的 3.提供一个框架来解释…