【XSY1529】小Q与进位制 分治 FFT】的更多相关文章

题目大意 ​ 小Q发明了一种进位制,每一位的变化范围是\(0\)~\(b_i-1\),给你一个这种进位制下的整数\(a\),问你有多少非负整数小于\(a\).结果以十进制表示. ​ \(n\leq 120000,0\leq a_i<b_i\leq 1000000\) 题解 ​ 就是求这个数. ​ 那没什么好说的,直接分治FFT 处理左半边(低位)的\(c_1=\prod b_i\)和答案\(d_1\),右半边的\(c2,d2\) ​ 那么\(c=c_1\times c_2,d=d_2\times…
题意很简单,就是求这个数... 其实场上我想出了分治fft的正解...然而不会打...然后打了个暴力fft挂了... 没啥好讲的,这题很恶心,卡常卡精度还爆int,要各种优化,有些dalao写的很复杂我都没看懂...我写的是每三位拆分然后再合并 代码: //强烈谴责卡常数而需要大量优化 //upd:还卡精度... #include<algorithm> #include<iostream> #include<cstring> #include<cstdio>…
题目大意 一个数每一位进制不同,已知每一位的进制,求该数的十进制表达. 显然有 $$Ans=\sum\limits_{i=0}^{n-1}a_i \prod\limits_{j=0}^{i-1}base_j$$ 若不考虑高精度则线性复杂度内由低位向高位递推即可,但考虑高精度的话即使压位也会$TLE$. 采用分治$+FFT$加速运算的方法. 分别求出第$1$至第$\frac n2$位和第$\frac n2+1$至第$n$位的答案,顺便求出$\prod\limits_{i=0}^{\frac n2}…
小Q有n本书,每本书有一个独一无二的编号,现在它们正零乱地在地上排成了一排. 小Q希望把这一排书分成恰好k段,使得每段至少有一本书,然后把每段按照现在的顺序依次放到k层书架的每一层上去.将所有书都放到书架上后,小Q这才突然意识到它们是乱序的,他只好把每一层的书分别按照编号 从小到大排序.排序每次可以在1单位时间内交换同一层上两本相邻的书. 请写一个程序,帮助小Q计算如何划分这k段,且如何交换这些书,使得总交换次数最少. Input 第一行包含两个正整数n; k(1≤n≤40000;1≤k≤min…
再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 写在前面 一些约定 循环卷积 DFT卷积的本质 Bluestein's Algorithm 例题 分治FFT 例题 FFT的弱常数优化 复杂算式中减少FFT次数 例题 利用循环卷积 小范围暴力 例题 快速幂乘法次数的优化 FFT的强常数优化 DF…
[Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT) 题面 给出一个\(n\)个点\(m\)条边的有向图(可能有环),走每条边需要支付一个价格\(c_i\),需要的时间为\([1,T]\)中随机的整数,时间为\(j\)的概率为\(p_{i,j}\).从\(1\)出发走到\(n\),如果到\(n\)的时间超过\(T\),就需要再支付\(X\).找出一条路径,使得支付钱数的期望值最小.输出最小期望. \(n \leq 50,m \leq 100,T \…
4815: [Cqoi2017]小Q的表格 题意: 单点修改,查询前缀正方形和.修改后要求满足条件f(a,b)=f(b,a), b×f(a,a+b)=(a+b)*f(a,b) 一开始sb了认为一次只会改动两三个格子想了个cdq分治做法... 一次会影响很多格子... 经过观察以及\((a,b)=(a,a-b)=(a,a+b)\)发现,每次修改影响所有\((i,j)=(a,b)\)的点对,并且关系为\(f(i,j)=\frac{i}{a}\frac{j}{b} f(a,b)\) 我们可以只记录\(…
hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治fft 注意过程中把r-l+1当做次数界就可以了,因为其中一个向量是[l,mid],我们只需要[mid+1,r]的结果. 多项式求逆 变成了 \[ A(x) = \frac{f_0}{1-B(x)} \] 的形式 要用拆系数fft,直接把之前的代码复制上就可以啦 #include <iostream…
题目大意 有\(n\)种颜色的球,第\(i\)种有\(a_i\)个.设\(m=\sum a_i\).你要把这\(m\)个小球排成一排.有\(q\)个询问,每次给你一个\(x\),问你有多少种方案使得相邻的小球同色的对数为\(x\). \(n\leq 10000,m\leq 200000\) 题解 我们考虑把这些小球分段,每段内所有小球颜色相同,但相邻两段的小球颜色可以相同. 设第\(i\)种颜色有\(b_i\)段,那么分\(j\)段的方案数是\(\frac{(\sum b_i)!}{\sum(b…
CTT=清华集训 题目大意 有\(n\)个点,点权为\(a_i\),你要连接一条边,使该图变成一颗树. 对于一种连边方案\(T\),设第\(i\)个点的度数为\(d_i\),那么这棵树的价值为: \[ val(T)=(\prod_{i=1}^na_i^{d_i}d_i^m)(\sum_{i=1}^nd_i^m) \] 求所有生成树的价值和\(\bmod 998244353\) \(n\leq 30000,m\leq 30\) 题解 很容易想到prufer序列 先把式子化简: \[ \begin{…