参考上篇博文:https://www.cnblogs.com/niutao/p/10547718.html 同样的逻辑,不同的封装 package offsetInZookeeper /** * Created by angel */ import java.lang.Object import kafka.utils.{ZKGroupTopicDirs, ZkUtils} import org.apache.kafka.clients.consumer.{ConsumerRecord, Kaf…
版本声明: kafka:1.0.1 spark:2.1.0 注意:在使用过程中可能会出现servlet版本不兼容的问题,因此在导入maven的pom文件的时候,需要做适当的排除操作 <?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2…
生产中,为了保证kafka的offset的安全性,并且防止丢失数据现象,会手动维护偏移量(offset) 版本:kafka:0.8 其中需要注意的点: 1:获取zookeeper记录的分区偏移量 2:获取broker中实际的最小和最大偏移量 3:将实际的偏移量和zookeeper记录的偏移量进行对比,如果zookeeper中记录的偏移量在实际的偏移量范围内则使用zookeeper中的偏移量 4:反之,使用实际的broker中的最小偏移量 KafkaHelper: import kafka.com…
有两种:Direct直连方式.Receiver方式 1.Receiver方式: 使用kafka高层次的consumer API来实现,receiver从kafka中获取的数据都保存在spark excutor的内存中,然后由Spark Streaming启动的job来处理数据.因此一旦数据量暴增,很容易造成内存溢出. 并且,在默认配置下,这种方式可能会因为底层失败而造成数据丢失,如果要启用高可靠机制,确保零数据丢失,要启用Spark Streaming的预写日志机制(Write Ahead Lo…
目录 说明 整体逻辑 offset建表语句 代码实现 说明 当前处理只实现手动维护offset到mysql,只能保证数据不丢失,可能会重复 要想实现精准一次性,还需要将数据提交和offset提交维护在一个事务中 官网说明 Your own data store For data stores that support transactions, saving offsets in the same transaction as the results can keep the two in sy…
不使用es-hadoop的saveToES,与scala版本冲突问题太多.不使用bulkprocessor,异步提交,es容易oom,速度反而不快.使用BulkRequestBuilder同步提交. 主要代码 public static void main(String[] args){ System.setProperty("hadoop.home.dir", "D:\\hadoop"); System.setProperty("es.set.netty…
一.概述 上次写这篇文章文章的时候,Spark还是1.x,kafka还是0.8x版本,转眼间spark到了2.x,kafka也到了2.x,存储offset的方式也发生了改变,笔者根据上篇文章和网上文章,将offset存储到Redis,既保证了并发也保证了数据不丢失,经过测试,有效. 二.使用场景 Spark Streaming实时消费kafka数据的时候,程序停止或者Kafka节点挂掉会导致数据丢失,Spark Streaming也没有设置CheckPoint(据说比较鸡肋,虽然可以保存Dire…
概述 Spark Streaming 支持多种实时输入源数据的读取,其中包括Kafka.flume.socket流等等.除了Kafka以外的实时输入源,由于我们的业务场景没有涉及,在此将不会讨论.本篇文章主要着眼于我们目前的业务场景,只关注Spark Streaming读取Kafka数据的方式. Spark Streaming 官方提供了两种方式读取Kafka数据: 一是Receiver-based Approach.该种读取模式官方最先支持,并在Spark 1.2提供了数据零丢失(zero-d…
在这篇文章里,我们模拟了一个场景,实时分析订单数据,统计实时收益. 场景模拟 我试图覆盖工程上最为常用的一个场景: 1)首先,向Kafka里实时的写入订单数据,JSON格式,包含订单ID-订单类型-订单收益 2)然后,spark-streaming每十秒实时去消费kafka中的订单数据,并以订单类型分组统计收益 3)最后,spark-streaming统计结果实时的存入本地MySQL. 前提条件 安装 1)spark:我使用的yarn-client模式下的spark,环境中集群客户端已经搞定 2…
Spark Streaming + Kafka direct 的 offset 存入Zookeeper并重用 streaming offset设置_百度搜索 将 Spark Streaming + Kafka direct 的 offset 存入Zookeeper并重用-Spark-about云开发 Spark & Kafka - Achieving zero data-loss spark-kafka-source/src/main/scala/com/ippontech/kafka at m…