利用SVD-推荐未尝过的菜肴】的更多相关文章

推荐未尝过的菜肴-基于SVD的评分估计 实际上数据集要比我们上一篇展示的myMat要稀疏的多. from numpy import linalg as la from numpy import * def loadExData2(): return[[0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 5], [0, 0, 0, 3, 0, 4, 0, 0, 0, 0, 3], [0, 0, 0, 0, 4, 0, 0, 1, 0, 4, 0], [3, 3, 4, 0, 0, 0, 0…
推荐未尝过的菜肴-基于物品相似度的推荐 推荐系统的工作过程:给定一个用户,系统会为此用户返回N个最好的推荐菜 1. 寻找用户没有评级的菜肴,即在用户-物品矩阵中的0值 2. 在用户没有评级的所有物品中,对每个物品预计一个可能的评级分数(利用相似度计算).这就是说,我们预测用户对每个物品的打分 3. 对这些物品的评分从高到低进行排序,返回前N个物品 from numpy import * from numpy import linalg as la 一.相似度计算(欧式距离.皮尔逊相关系数.余弦相…
一. SVD 1. 基本概念: (1)定义:提取信息的方法:奇异值分解Singular Value Decomposition(SVD) (2)优点:简化数据, 去除噪声,提高算法的结果 (3)缺点:数据转换难以想象,耗时,损失特征 (4)适用于:数值型数据 2. 应用: (1)隐性语义索引(LSI/LSA) (2)推荐系统 3. 原理--矩阵分解 将原始的数据集矩阵data(m*n)分解成三个矩阵U(m*n), Sigma(n*m), VT(m*n): 对于Sigma矩阵: 该矩阵只用对角元素…
第14章 利用SVD简化数据 SVD 概述 奇异值分解(SVD, Singular Value Decomposition): 提取信息的一种方法,可以把 SVD 看成是从噪声数据中抽取相关特征.从生物信息学到金融学,SVD 是提取信息的强大工具. SVD 场景 信息检索-隐形语义检索(Lstent Semantic Indexing, LSI)或 隐形语义分析(Latent Semantic Analysis, LSA) 隐性语义索引:矩阵 = 文档 + 词语 是最早的 SVD 应用之一,我们…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第14章 - 利用SVD简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. 基本概念 降维(dimensionality reduction). 如果样本数据的特征维度很大,会使得难以分析和理解.我们可以通过降维技术减少维度. 降维技术并不是将影响少的特征去掉,而是将样本数据集转换成一个低维度的数据集. 降维技术的用途 使得数据集更易使用: 降低很多算法的计算开销: 去除噪声: 使得结…
奇异值分解(Singular Value Decompositon,SVD),可以实现用小得多的数据集来表示原始数据集. 优点:简化数据,取出噪声,提高算法的结果 缺点:数据的转换可能难以理解 适用数据类型:数值型数据 SVD最早的应用之一是信息检索,我们称利用SVD的方法为隐形语义索引(LSI)或者隐形语义分析(LSA). 在LSI中,一个矩阵是有文档和词语组成的.当我们在该矩阵上应用SVD的时候,就会构建出多个奇异值.这些奇异值代表了文档中的概念或者主题,这一特点可以用于更高效的文档检索.…
相关博客: 吴恩达机器学习笔记(八) —— 降维与主成分分析法(PCA) <机器学习实战>学习笔记第十三章 —— 利用PCA来简化数据 奇异值分解(SVD)原理与在降维中的应用 机器学习(29)之奇异值分解SVD原理与应用详解 主要内容: 一.SVD简介 二.U.∑.VT三个矩阵的求解 三.U.∑.VT三个矩阵的含义 四.SVD用于PCA降维 五.利用SVD优化推荐系统 六.利用SVD进行数据压缩 一.SVD简介 1.SVD分解能够将任意矩阵着矩阵(m*n)分解成三个矩阵U(m*m).Σ(m*…
特征值与特征向量 下面这部分内容摘自:强大的矩阵奇异值分解(SVD)及其应用 特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法.两者有着很紧密的关系,在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征.先谈谈特征值分解吧: 如果说一个向量v是方阵A的特征向量,则可以表示成下面的形式: 这时候λ就被称为特征向量v对应的特征值,一个矩阵的一组特征向量是一组正交向量.特征值分解是将一个矩阵分解成下面的形式: 其中Q是这个矩阵A的特征向量组成的矩阵,Σ是一个对…
内容简介 机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中萃取有价值的信息或模式,成为各行业求生存.谋发展的决定性手段,这使得这一过去为分析师和数学家所专属的研究领域越来越为人们所瞩目. <机器学习实战>主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法.朴素贝叶斯算法.Logistic回归算法.支持向量机.AdaBoost集成方法.基于树的回归算法和分类回归树(CART)算法等.第三部分则重点介绍无监督…
SVD在餐馆菜肴推荐系统中的应用 摘要:餐馆可以分为很多类别,比如中式.美式.日式等等.但是这些类别不一定够用,有的人喜欢混合类别.对用户对菜肴的点评数据进行分析,可以提取出区分菜品的真正因素,利用这些因素我们可以估计人们对没去过的餐厅的看法.提取这些信息的方法就是SVD(Singular Value Decomposition).本文首先介绍SVD的数学原理,然后简单介绍推荐系统的相关原理,最后通过python编程实现简单的基于协同过滤的菜肴推荐系统. 关键词:SVD:推荐系统:python:…