GCD HDU - 1695 (欧拉 + 容斥)】的更多相关文章

D - GCD HDU - 1695 思路: 都 除以 k 后转化为  1-b/k    1-d/k中找互质的对数,但是需要去重一下  (x,y)  (y,x) 这种情况. 这种情况出现 x  ,y 肯定 都在 min  (b/k, d/k)  ,所以 奇数 最后 减去 一半 即可. #include<bits/stdc++.h> using namespace std; #define ll long long #define maxn 1234567 bool vis[maxn+10];…
GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 17385    Accepted Submission(s): 6699 Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y…
Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 935    Accepted Submission(s): 339 Problem Description Given a number N, you are asked to count the number of integers between A and B in…
GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 15488    Accepted Submission(s): 5948 Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x,…
http://acm.hdu.edu.cn/showproblem.php?pid=6390 题意:求一个式子 题解:看题解,写代码 第一行就看不出来,后面的sigma公式也不会化简.mobius也不会 就自己写了个容斥搞一下(才能维持现在的生活) //别人的题解https://blog.csdn.net/luyehao1/article/details/81672837 #include <iostream> #include <cstdio> #include <cstr…
GCD  nyoj 1007 (欧拉函数+欧几里得) GCD 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.(a,b) can be…
pid=3970">链接 题解:www.cygmasot.com/index.php/2015/08/17/hdu_3970 给定n  求连续整数[0,n), 中随意选一些数使得选出的数和为n的倍数的方法数 ...并不会怎样递推. . 思路: 然后这是公式:q=2%2C2%2C4%2C4%2C8%2C12%2C20%2C32%2C60&language=english&go=Search">点击打开链接 a(n) = 1/n * sum_{d divides…
题目链接 题意 : 从[a,b]中找一个x,[c,d]中找一个y,要求GCD(x,y)= k.求满足这样条件的(x,y)的对数.(3,5)和(5,3)视为一组样例 . 思路 :要求满足GCD(x,y)=k的对数,则将b/k,d/k,然后求GCD(x,y)=1的对数即可.假设b/k >= d/k ;对于1到b/k中的某个数s,如果s<=d/k,则因为会有(x,y)和(y,x)这种会重复的情况,所以这时候的对数就是比s小的与s互质的数的个数,即s的欧拉函数.至于重复的情况是指:在d/k中可能有大于…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题目解析: Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. 题目又说a==c==1,所以就是求[1,b]与[1,d]中gcd等于k的个数,因为若gcd(x,y)==z,那么gcd(x/z,y/z)==1,又因为不是z的倍数的肯定不是,所以不是z的倍数的可以直接去…
题意:给出[a,b]区间内与n互质的个数 思路:如果n比较小,我们可以用欧拉函数解决,但是n有1e9.要求区间内互质,我们可以先求前缀内互质个数,即[1,b]内与n互质,求互质,可以转化为求不互质,也就是有除1的公因数.那么我们把n质因数分解,就能算出含某些公因数的不互质的个数.因为会重复,所以容斥解决.因为因数个数可能很多(随便算了一个20!> 2e18,所以质因数分解个数不会超过20个),我们可以用二进制来遍历解决. #include<set> #include<map>…