Caffe学习】的更多相关文章

0.检查配置 1. VMWare上运行的Ubuntu,并不能支持真实的GPU(除了特定版本的VMWare和特定的GPU,要求条件严格,所以我在VMWare上搭建好了Caffe环境后,又重新在Windows 7 64bit系统上安装了Ubuntu 14.04 64bit系统,链接在此,以此来搭建Caffe GPU版本): 2. 确定GPU支持CUDA 输入: lspci | grep -i nvidia 显示结果: 我的是GTX 650,然后到http://developer.nvidia.com…
所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层. 1.Convolution层: 就是卷积层,是卷积神经网络(CNN)的核心层. 层类型:Convolution lr_mult: 学习率…
caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分类,但样本量太小,可能只有几百张,而一般深度学习都要求样本量在1万以上,因此训练出来的model精度太低,根本用不上,那怎么办呢? 那就用caffe团队提供给我们的model吧. 因为训练好的model里面存放的就是一些参数,因此我们实际上就是把别人预先训练好的参数,拿来作为我们的初始化参数,而不需…
上接:Caffe学习系列(21):caffe图形化操作工具digits的安装与运行 经过前面的操作,我们就把数据准备好了. 一.训练一个model 右击右边Models模块的” Images" 按钮 ,选择“classification" 在打开页面右下角可以看到,系统提供了一个caffe model,分别为LeNet, AlexNet, GoogLeNet, 如果使用这三个模型,则所有参数都已经设置好了,就不用再设置了. 在下面,系统为我们列举出了本机所带的显卡,我们可以选择其中一块…
经过前面一系列的学习,我们基本上学会了如何在linux下运行caffe程序,也学会了如何用python接口进行数据及参数的可视化. 如果还没有学会的,请自行细细阅读: caffe学习系列:http://www.cnblogs.com/denny402/tag/caffe/ 也许有人会觉得比较复杂.确实,对于一个使用惯了windows视窗操作的用户来说,各种命令就要了人命,甚至会非常抵触命令操作.没有学过python,要自己去用python编程实现可视化,也是非常头痛的事情.幸好现在有了nvidi…
学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去imagenet的官网http://www.image-net.org/download-images,下载imagenet图片来训练.但是我没有下载,一个原因是注册账号的时候,验证码始终出不来(听说是google网站的验证码,而我是上不了google的).第二个原因是数据太大了... 我去网上找了…
学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去imagenet的官网http://www.image-net.org/download-images,下载imagenet图片来训练.但是我没有下载,一个原因是注册账号的时候,验证码始终出不来(听说是google网站的验证码,而我是上不了google的).第二个原因是数据太大了... 我去网上找了…
所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层. 1.Convolution层: 就是卷积层,是卷积神经网络(CNN)的核心层. 层类型:Convolution lr_mult: 学习率…
Caffe学习系列——工具篇:神经网络模型结构可视化 在Caffe中,目前有两种可视化prototxt格式网络结构的方法: 使用Netscope在线可视化 使用Caffe提供的draw_net.py 本文将就这两种方法加以介绍 1. Netscope:支持Caffe的神经网络结构在线可视化工具 Netscope是个支持prototxt格式描述的神经网络结构的在线可视工具,网址:  http://ethereon.github.io/netscope/quickstart.html  它可以用来可…
学习列表: Google protocol buffer在windows下的编译 caffe windows 学习第一步:编译和安装(vs2012+win 64) caffe windows学习:第一个测试程序 Caffe学习系列(1):安装配置ubuntu14.04+cuda7.5+caffe+cudnn Caffe学习系列(2):数据层及参数 Caffe学习系列(3):视觉层(Vision Layers)及参数 Caffe学习系列(4):激活层(Activiation Layers)及参数…
Caffe学习笔记(三):Caffe数据是如何输入和输出的? Caffe中的数据流以Blobs进行传输,在<Caffe学习笔记(一):Caffe架构及其模型解析>中已经对Blobs进行了简单的介绍.下面对caffe数据是如何输入和输出做更加详细的分析. 1.输入/输出之Blobs caffe使用blobs结构来存储.交换并处理网络中正向和反向迭代时的数据和导数信息,blob是caffe的标准数组结构,是caffe中处理和传递实际数据的数据封装包,它提供了一个统一的内存接口,从数学意义上说,bl…
Caffe学习笔记(二):Caffe前传与反传.损失函数.调优 在caffe框架中,前传/反传(forward and backward)是一个网络中最重要的计算过程:损失函数(loss)是学习的驱动,类似于视频编码中的率失真代价,是衡量学习的程度,或者说,学习的目的是找到一个网络权重的集合,使得损失函数最小:Solver是通过协调网络的前向推断计算和反向计算来对参数进行更新,从而达到减小loss的目的. 下面将对forward and backward.loss.solver分别进行介绍. 1…
Caffe学习笔记(一):Caffe架构及其模型解析 写在前面:关于caffe平台如何快速搭建以及如何在caffe上进行训练与预测,请参见前面的文章<caffe平台快速搭建:caffe+window7+vs2013>.<Windows平台上Caffe的训练与学习方法(以数据库CIFAR-10为例)>. 本文主要介绍Caffe的总体框架,并对caffe模型进行解析,主要是本人的学习笔记,参考了各种资料,例如:<Caffe官方教程中译本>,网址:http://caffe.b…
Caffe学习笔记4图像特征进行可视化 本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权 欢迎关注我的博客:http://blog.csdn.net/hit2015spring和http://www.cnblogs.com/xujianqing/ 这篇文章主要参考的是http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/00-classification.ipynb 可以算是对它…
Caffe学习笔记3 本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权 欢迎关注我的博客:http://blog.csdn.net/hit2015spring和http://www.cnblogs.com/xujianqing http://caffe.berkeleyvision.org/gathered/examples/feature_extraction.html 这篇博客主要是用imagenet的一个网络模型来对自己的图片进行训练和测试 图片下载网…
Caffe 学习笔记1 本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权 欢迎关注我的博客:http://blog.csdn.net/hit2015spring和http://www.cnblogs.com/xujianqing 这篇博客是caffe官网的一片例程吧,只是熟悉一下操作而已 http://caffe.berkeleyvision.org/gathered/examples/cifar10.html 1.准备数据 cd /home/wangshu…
Caffe学习笔记2-用一个预训练模型提取特征 本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权 欢迎关注我的博客:http://blog.csdn.net/hit2015spring和http://www.cnblogs.com/xujianqing http://caffe.berkeleyvision.org/gathered/examples/feature_extraction.html 制作一个数据库 先做一个临时文件夹 mkdir exampl…
1 收集自己的数据 1-1 我的训练集与测试集的来源:表情包 由于网上一幅一幅图片下载非常麻烦,所以我干脆下载了两个eif表情包.同一个表情包里的图像都有很强的相似性,因此可以当成一类图像来使用.下载个eif解压包可以把eif文件解压成gif和jpg格式的文件,然后删除gif文件,只留下jpg格式的文件,这些图就是我的训练集与测试集了. 1-2 使用rename批量重命名图像 (1)对于一个存放了图像src.jpg的文件夹ROOT,在ROOT中新建一个test.txt文件,在里面写下“renam…
1 引言 1-1 以example_mnist为例,如何加载属于自己的测试集? 首先抛出一个问题:在example_mnist这个例子中,测试集是人家给好了的.那么如果我们想自己试着手写几个数字然后验证识别效果又当如何呢? 观察CAFFE_ROOT/examples/mnist/下的lenet_train_test.prototxt文件,发现里面既给出了训练集的路径,又给出了测试集的路径.因此答案很显然了,我们可以把自己的测试集做成leveldb(或lmdb)格式的,然后在lenet_train…
caffe学习--cifar10学习-ubuntu16.04-gtx650tiboost--1g--02 训练网络: caffe train -solver examples/cifar10/cifar10_quick_solver.prototxt I1025 09:52:16.952167 7453 sgd_solver.cpp:105] Iteration 3700, lr = 0.001 I1025 09:52:18.843194 7453 solver.cpp:218] Iterati…
Caffe学习系列(12):训练和测试自己的图片   学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去imagenet的官网http://www.image-net.org/download-images,下载imagenet图片来训练.但是我没有下载,一个原因是注册账号的时候,验证码始终出不来(听说是google网站的验证码,而我是上不了goo…
本文假设你已经完成了安装,并可以运行demo.py 不会安装且用PASCAL VOC数据集的请看另来两篇博客. caffe学习一:ubuntu16.04下跑Faster R-CNN demo (基于caffe). (亲测有效,记录经历两天的吐血经历) https://www.cnblogs.com/elitphil/p/11527732.html caffe学习二:py-faster-rcnn配置运行faster_rcnn_end2end-VGG_CNN_M_1024 (Ubuntu16.04)…
如何在 centos 7.3 上安装 caffe 深度学习工具   有好多朋友在安装 caffe 时遇到不少问题.(看文章的朋友希望关心一下我的创业项目趣智思成) 今天测试并整理一下安装过程.我是在阿里云上测试,选择centos 7.3 镜像. 先安装 epel 源 1 yum install epel-release 安装基本编译环境 1 2 yum install protobuf-devel leveldb-devel snappy-devel opencv-devel boost-dev…
solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是solver配置文件.运行代码一般为 # caffe train --solver=*_slover.prototxt 在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解.solver的主要作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法. 到目前的版本,…
如何在Caffe中增加一层新的Layer呢?主要分为四步: (1)在./src/caffe/proto/caffe.proto 中增加对应layer的paramter message: (2)在./include/caffe/***layers.hpp中增加该layer的类的声明,***表示有common_layers.hpp, data_layers.hpp, neuron_layers.hpp, vision_layers.hpp 和loss_layers.hpp等: (3)在./src/c…
通过前面的学习,我们已经能够正常训练各种数据了.设置好solver.prototxt后,我们可以把训练好的模型保存起来,如lenet_iter_10000.caffemodel. 训练多少次就自动保存一下,这个是通过snapshot进行设置的,保存文件的路径及文件名前缀是由snapshot_prefix来设定的.这个文件里面存放的就是各层的参数,即net.params,里面没有数据(net.blobs).顺带还生成了一个相应的solverstate文件,这个和caffemodel差不多,但它多了…
caffe程序是由c++语言写的,本身是不带数据可视化功能的.只能借助其它的库或接口,如opencv, python或matlab.大部分人使用python接口来进行可视化,因为python出了个比较强大的东西:ipython notebook, 现在的最新版本改名叫jupyter notebook,它能将python代码搬到浏览器上去执行,以富文本方式显示,使得整个工作可以以笔记的形式展现.存储,对于交互编程.学习非常方便. python环境不能单独配置,必须要先编译好caffe,才能编译py…
在深度学习的实际应用中,我们经常用到的原始数据是图片文件,如jpg,jpeg,png,tif等格式的,而且有可能图片的大小还不一致.而在caffe中经常使用的数据类型是lmdb或leveldb,因此就产生了这样的一个问题:如何从原始图片文件转换成caffe中能够运行的db(leveldb/lmdb)文件? 在caffe中,作者为我们提供了这样一个文件:convert_imageset.cpp,存放在根目录下的tools文件夹下.编译之后,生成对应的可执行文件放在 buile/tools/ 下面,…
上文提到,到目前为止,caffe总共提供了六种优化方法: Stochastic Gradient Descent (type: "SGD"), AdaDelta (type: "AdaDelta"), Adaptive Gradient (type: "AdaGrad"), Adam (type: "Adam"), Nesterov’s Accelerated Gradient (type: "Nesterov&qu…
本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss softmax-loss层和softmax层计算大致是相同的.softmax是一个分类器,计算的是类别的概率(Likelihood),是Logistic Regression 的一种推广.Logistic Regression 只能用于二分类,而softmax可以用于多分类. softmax与softm…