[论文简析]How Do Vision Transformers Work?[2202.06709] 论文题目:How Do Vision Transformers Work? 论文地址:http://arxiv.org/abs/2202.06709 代码:https://github.com/xxxnell/how-do-vits-work ICLR2022 - Reviewer Kvf7: 这个文章整理的太难懂了 很多trick很有用,但是作者并没有完全说明 行文线索 Emporocal O…
2014 CVPR Facebook AI研究院 简单介绍 人脸识别中,通常经过四个步骤,检测,对齐(校正),表示,分类 论文主要阐述了在对齐和表示这两个步骤上提出了新的方法,模型的表现超越了前人的工作 对齐方面主要使用了3D人脸模型来对齐人脸,表示方面使用了9层的一个CNN,其中使用了局部卷积 人脸对齐 已经存在一些人脸数据库的对齐版本(比如LFW-a),但是对齐人脸仍然是一件很困难的事,由于受到姿态(人脸的非平面性),非刚性表情等因素的影响.已经有很多方法成功用于人脸对齐,论文使用的方法是基…
Awesome Deep Vision  A curated list of deep learning resources for computer vision, inspired by awesome-php and awesome-computer-vision. Maintainers - Jiwon Kim, Heesoo Myeong, Myungsub Choi, Jung Kwon Lee, Taeksoo Kim We are looking for a maintainer…
​  前言  本文介绍一种新的tokens-to-token Vision Transformer(T2T-ViT),T2T-ViT将原始ViT的参数数量和MAC减少了一半,同时在ImageNet上从头开始训练时实现了3.0%以上的改进.通过直接在ImageNet上进行训练,它的性能也优于ResNet,达到了与MobileNet相当的性能. 本文来自公众号CV技术指南的论文分享系列 关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 论文:Tokens-to-…
论文题目:<Vision Permutator: A Permutable MLP-Like ArchItecture For Visual Recognition> 论文作者:Qibin Hou, Zihang Jiang, Li Yuan et al. 论文发表年份:2022.2 模型简称:ViP 发表期刊: IEEE Transactions on Pattern Analysis and Machine Intelligence Abstract 在本文中,我们提出了一种概念简单.数据…
http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之:CNN卷积神经网络推导和实现 [4]Deep Learning模型之:CNN的反向求导及练习 [5]Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN [6]Deep Learn…
[1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之:CNN卷积神经网络推导和实现 [4]Deep Learning模型之:CNN的反向求导及练习 [5]Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN [6]Deep Learning模型之:CNN卷积神经网络(二)文字识别系统LeNet-5 [7]Deep Learning模型之:CNN卷积神经网络(三)CNN常见问题总结 1. 概述 卷积神经网络是一种…
本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之:CNN卷积神经网络推导和实现 [4]Deep Learning模型之:CNN的反向求导及练习 [5]Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN [6]Deep Learning模型之:CNN卷积神经网络(二)文字识别系统LeNet-5 [7]Deep Learning…
DeepFace基本框架 人脸识别的基本流程是: detect -> aligh -> represent -> classify 人脸对齐流程 分为如下几步: a. 人脸检测,使用6个基点 b. 二维剪切,将人脸部分裁剪出来 c. 67个基点,然后Delaunay三角化,在轮廓处添加三角形来避免不连续 d. 将三角化后的人脸转换成3D形状 e. 三角化后的人脸变为有深度的3D三角网 f. 将三角网做偏转,使人脸的正面朝前. g. 最后放正的人脸 h. 一个新角度的人脸(在论文中没有用到…
本文译自<Deep learning for understanding faces: Machines may be just as good, or better, than humans>.为了方便,文中论文索引位置保持不变,方便直接去原文中找参考文献. 近些年深度卷积神经网络的发展将各种目标检测和识别问题大大的向前推进了不少.这同时也得益于大量的标注数据集和GPU的使用,这些方面的发展使得在无限制的图片和视频中理解人脸,自动执行诸如人脸检测,姿态估计,关键点定位和人脸识别成为了可能.本…