14年9月份挂出来的文章,基本思想就是用对抗训练的方法来学习domain invariant的特征表示.方法也很只管,在网络的某一层特征之后接一个判别网络,负责预测特征所属的domain,而后特征提取器和判别器在域分类loss上对抗,同时特征提取器和lable分类器(也就是原任务中的分类器)共同优化lable分类loss.整个过程跟GAN是差不多的,一种个人的不严谨的说法,可以将GAN理解成像素空间上的Adaptation,而这篇文章是特征空间上的Adaptation. 文章的另一个贡献是提出了…