论文信息 论文标题:Improve Unsupervised Domain Adaptation with Mixup Training论文作者:Shen Yan, Huan Song, Nanxiang Li, Lincan Zou, Liu Ren论文来源:arxiv 2020论文地址:download 论文代码:download引用次数:93 1 Introduction 现有方法分别对源域和目标域施加约束,忽略了它们之间的重要相互作用.本文使用 mixup 来加强训练约束来直接解决目标域…
论文信息 论文标题:Joint domain alignment and discriminative feature learning for unsupervised deep domain adaptation论文作者:Chao Chen , Zhihong Chen , Boyuan Jiang , Xinyu Jin论文来源:AAAI 2019论文地址:download 论文代码:download引用次数:175 1 Introduction 近年来,大多数工作集中于减少不同领域之间的…
论文信息 论文标题:Cross-domain Contrastive Learning for Unsupervised Domain Adaptation论文作者:Rui Wang, Zuxuan Wu, Zejia Weng, Jingjing Chen, Guo-Jun Qi, Yu-Gang Jiang论文来源:aRxiv 2022论文地址:download 论文代码:download 1 Introduction 无监督域自适应(UDA)的目的是将从一个完全标记的源域学习到的知识转移到…
论文信息 论文标题:CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation论文作者:Tongkun Xu, Weihua Chen, Pichao Wang, Fan Wang, Hao Li, Rong Jin论文来源:ICLR 2022论文地址:download 论文代码:download 1 Introduction 无监督域自适应(Unsupervised domain adaptation,UDA)的目的…
论文信息 论文标题:Unsupervised Domain Adaptation for COVID-19 Information Service with Contrastive Adversarial Domain Mixup论文作者:Huimin Zeng, Zhenrui Yue, Ziyi Kou, Lanyu Shang, Yang Zhang, Dong Wang论文来源:aRxiv 2022论文地址:download 论文代码:download 1 Introduction 2…
论文信息 论文标题:Contrastive Adaptation Network for Unsupervised Domain Adaptation论文作者:Guoliang Kang, Lu Jiang, Yi Yang, Alexander G Hauptmann论文来源:CVPR 2019论文地址:download 论文代码:download 1 Preface 出发点: 无监督域自适应(UDA)对目标域数据进行预测,而标签仅在源域中可用: 以往的方法将忽略类信息的域差异最小化,可能导致…
目录 概 主要内容 代码 Ganin Y. and Lempitsky V. Unsupervised Domain Adaptation by Backpropagation. ICML 2015. 概 监督学习非常依赖标签数据, 但是获得大量的标签数据在现实中是代价昂贵的一件事情, 这也是为何半监督和无监督重要的原因. 本文提出一种利用GRL来进行domain adaptation的方法, 感觉本文的创新点还是更加偏重于结构一点. 主要内容 接下来的叙述的方式可能和原文的有一点点的出入. 首…
转自:http://blog.csdn.net/mao_xiao_feng/article/details/54426101 一.Domain adaptation 在开始介绍之前,首先我们需要知道Domain adaptation的概念.Domain adaptation,我在标题上把它称之为域适应,但是在文中我没有再翻译它,而是保持它的英文原意,这也有助于我们更好的理解它的概念. Domain adaptation的目标是在某一个训练集上训练的模型,可以应用到另一个相关但不相同的测试集上.…
年域适应挑战(DAC)数据集的实验表明,所提出的方法不仅有效解决了数据集不匹配问题,而且还优于上述无监督域自适应方法.        …
14年9月份挂出来的文章,基本思想就是用对抗训练的方法来学习domain invariant的特征表示.方法也很只管,在网络的某一层特征之后接一个判别网络,负责预测特征所属的domain,而后特征提取器和判别器在域分类loss上对抗,同时特征提取器和lable分类器(也就是原任务中的分类器)共同优化lable分类loss.整个过程跟GAN是差不多的,一种个人的不严谨的说法,可以将GAN理解成像素空间上的Adaptation,而这篇文章是特征空间上的Adaptation. 文章的另一个贡献是提出了…