Numpy库基础___二】的更多相关文章

ndarray一个强大的N维数组对象Array •ndarray的变换 x.reshape(shape)重塑数组的shape,要求元素的个数一致,不改变原数组 x = np.ones((2,3,4),dtype=np.int32) print(x) #[[[1 1 1 1] # [1 1 1 1] # [1 1 1 1]] # # [[1 1 1 1] # [1 1 1 1] # [1 1 1 1]]] #[[[1 1 1 1] # [1 1 1 1] # [1 1 1 1]] # # [[1…
Numpy数据存取 •数据的csv文件的存取 只能有效存取和读取一维和二维数据 a = np.arange(100).reshape(5,20) #用delimiter分割,默认为空格 np.savetxt('a.csv',a,fmt='%d',delimiter=',') #unpack=True 读入属性将写入不同变量,默认unpack=False b = np.loadtxt('a.csv',dtype=np.int,delimiter=',',unpack=False) print(b)…
Numpy数据存取 •NumPy的随机数函数 a = np.random.rand(1,2,3) print(a) #[[[0.03339719 0.72784732 0.47527802] # [0.6456671 0.65639799 0.01300073]]] a = np.random.randn(1,2,3) print(a) #[[[ 0.59115211 -0.40289048 1.34532466] # [-0.04616715 -0.64066822 -1.09722129]]…
ndarray一个强大的N维数组对象Array •ndarray的建立(元素默认浮点数) 可以利用list列表建立ndarray import numpy as np list =[0,1,2,3] 从列表类型建立 x = np.array(list) print(x) #[0 1 2 3] 可以利用tuple元组建立ndarray import numpy as np 从元组类型建立 x = np.array((4,5,6,7)) print(x) #[4 5 6 7] 可以从列表和元组混合类…
ndarray一个强大的N维数组对象Array •ndarray的操作 索引 a = np.arange(24).reshape((2,3,4)) print(a) #[[[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11]] # # [[12 13 14 15] # [16 17 18 19] # [20 21 22 23]]] print(a[1,2,3]) #23 print(a[0,1,2]) #6 print(a[-1,-2,-3]) #17 切片 a = np…
数据分析图片保存:vg 1.保存图片:plt.savefig(path) 2.图片格式:jpg,png,svg(建议使用,不失真) 3.数据存储格式: excle,csv csv介绍 csv就是用逗号隔开的纯文本信息!!会以表格的信息打开 矩阵生成的相关属性 impor numpy as np #导入模块 a = np.array([1,2,3,4,5]) #一维矩阵 a = np.array([[1,2,3],[4,5,6]]) #二维矩阵 np.eye(3) #单位矩阵 np.diag(np…
numpy库是python的一个著名的科学计算库,本文是一个quickstart. 引入:计算BMI BMI = 体重(kg)/身高(m)^2 假如有如下几组体重和身高数据,让求每组数据的BMI值: weight = [65.4,59.2,63.6,88.4,68.7] height = [1.73,1.68,1.71,1.89,1.79] print weight / height ** 2 执行上面代码,报错:TypeError: unsupported operand type(s) fo…
使用numpy库可以快速将一个二维数组进行转置,方法有三种 1.使用numpy包里面的transpose()可以快速将一个二维数组转置 2.使用.T属性快速转置 3.使用swapaxes(1, 0)方法 t5 = np.arange(12).reshape(3, 4) print(t5) print("*"*20) # 将t5矩阵进行转置 t6 = t5.transpose() print(t6) print("*"*20) t7= t5.T print(t7) p…
今天来继续学习一下Numpy库的使用 接着昨天的内容继续 在Numpy中,我们如果想要进行一个判断使用“==” 我们来看下面的代码 vector = np.array([5,10,15,20,25]) vector == 10 我们来看看上面的代码,这段代码表示的是什么意思呢? vector == 10 表示的是,当前的array当中所有的元素都会进行判断 是否等于10 我们可以看到,运行结果为上图所示,只有第2个值为True 那么这里可以看到是对每一个值都进行了判断 那么矩阵操作也是一样的 m…
1.numpy库简介:    NumPy提供了许多高级的数值编程工具,如:矩阵数据类型.矢量处理,以及精密的运算库.专为进行严格的数字处理而产生. 2.numpy库使用: 注:由于深度学习中存在大量的矩阵运算,实践中也主要关注此点. 运行环境:Python3 (1)矩阵(matrix).列表(list).数组(array)的转换 list变成array: np.array(A) list变为matrix:np.mat(A) array和matrix相互转换: np. mat(A),np. arr…