NLP之基于logistic回归的文本分类】的更多相关文章

数据集下载: 链接:https://pan.baidu.com/s/17EL37CQ-FtOXhtdZHQDPgw 提取码:0829 逻辑斯蒂回归 @ 目录 逻辑斯蒂回归 1.理论 1.1 多分类 1.2 公式 2.实验 2.1 实验步骤 2.2 代码 1.理论 1.1 多分类 若用logistc进行五分类,可以进行5次二分类,把情感标签当作5维向量. softmax常用于多分类,当类别数为2时,和logistic等价.他把一些输入映射为0-1之间的实数,并且归一化保证和为1,因此多分类的概率之…
基于Spark Mllib的文本分类 文本分类是一个典型的机器学习问题,其主要目标是通过对已有语料库文本数据训练得到分类模型,进而对新文本进行类别标签的预测.这在很多领域都有现实的应用场景,如新闻网站的新闻自动分类,垃圾邮件检测,非法信息过滤等.本文将通过训练一个手机短信样本数据集来实现新数据样本的分类,进而检测其是否为垃圾消息,基本步骤是:首先将文本句子转化成单词数组,进而使用 Word2Vec 工具将单词数组转化成一个 K 维向量,最后通过训练 K 维向量样本数据得到一个前馈神经网络模型,以…
参数设置 α: 梯度上升算法迭代时候权重更新公式中包含 α :  http://blog.csdn.net/lu597203933/article/details/38468303 为了更好理解 α和最大迭代次数的作用,给出Python版的函数计算过程. # 梯度上升算法-计算回归系数 # 每个回归系数初始化为1 # 重复R次: # 计算整个数据集的梯度 # 使用α*梯度更新回归系数的向量 # 返回回归系数 def gradAscent(dataMatIn, classLabels,alpha=…
利用logistic回归解决手写数字识别问题,数据集私聊. from scipy.io import loadmat import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.optimize import minimize data = loadmat('ex3data1.mat') data_row = data['X'].shape #5000个200*200的矩阵,表示5000个手写…
此部分内容是对机器学习实战一书的第五章的数学推导,主要是对5.2节代码实现中,有一部分省去了相关的公式推导,这里进行了推导,后续会将算法进行java实现.此部分同样因为公式较多,采用手写推导,拍照记录的方式. 第一部分推导目标函数 第二部分采用梯度下降方法进行优化 至此两部分就完成了对logistics回归的公式推导.…
Sentiment classification using LSTM 在这个笔记本中,我们将使用LSTM架构在电影评论数据集上训练一个模型来预测评论的情绪.首先,让我们看看什么是LSTM? LSTM,即长短时记忆,是一种序列神经网络架构,它利用其结构保留了对前一序列的记忆.第一个被引入的序列模型是RNN.但是,很快研究人员发现,RNN并没有保留很多以前序列的记忆.这导致在长文本序列中失去上下文. 为了维护这一背景,LSTM被引入.在LSTM单元中,有一些特殊的结构被称为门和单元状态,它们被改变…
理论 什么是朴素贝叶斯算法? 朴素贝叶斯分类器是一种基于贝叶斯定理的弱分类器,所有朴素贝叶斯分类器都假定样本每个特征与其他特征都不相关.举个例子,如果一种水果其具有红,圆,直径大概3英寸等特征,该水果可以被判定为是苹果.尽管这些特征相互依赖或者有些特征由其他特征决定,然而朴素贝叶斯分类器认为这些属性在判定该水果是否为苹果的概率分布上独立的. 朴素贝叶斯分类器很容易建立,特别适合用于大型数据集,众所周知,这是一种胜过许多复杂算法的高效分类方法. 贝叶斯公式提供了计算后验概率P(X|Y)的方式: 其…
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于Text-CNN模型在搜狗新闻数据集上二分类的Demo. 文本分类是自然语言处理领域最活跃的研究方向之一,从样本数据的分类标签是否互斥上来说,可以分为文本多分类与文本多标签分类. 文本分类 目前文本分类在工业界的应用场景非常普遍,从新闻的分类.商品评论信息的情感分类到微博信息打标签辅助推荐系统,了解文…
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于Text-CNN模型在搜狗新闻数据集上二分类的Demo. 文本分类是自然语言处理领域最活跃的研究方向之一,从样本数据的分类标签是否互斥上来说,可以分为文本多分类与文本多标签分类. 文本分类 目前文本分类在工业界的应用场景非常普遍,从新闻的分类.商品评论信息的情感分类到微博信息打标签辅助推荐系统,了解文…
Logistic回归分析(logit回归)一般可分为3类,分别是二元Logistic回归分析.多分类Logistic回归分析和有序Logistic回归分析.logistic回归分析类型如下所示. Logistic回归分析用于研究X对Y的影响,并且对X的数据类型没有要求,X可以为定类数据,也可以为定量数据,但要求Y必须为定类数据,并且根据Y的选项数,使用相应的数据分析方法. 如果Y有两个选项,如愿意和不愿意.是和否,那么应该使用二元Logistic回归分析(SPSSAU[进阶方法->二元logit…