解题心得: 1.注意动态转移方程式,d[j]+1>d[i]>?d[i]=d[j]+1:d[i] 2.动态规划的基本思想:将大的问题化为小的,再逐步扩大得到答案,但是小问题的基本性质要和大的问题相同. 3.这是动态规划的经典方程式,但是耗时较多,在数据较大的时候会出现超时的情况. 题目: 1180: 最长上升子序列之基础 Time Limit: 1000 MS Memory Limit: 65536 KB Total Submit: 166 Accepted: 79 Page View: 551…
这个博客说的已经很好了.http://blog.csdn.net/shuangde800/article/details/7474903 简单记录一下自己学的: 问题就是求一个数列最长上升子序列的长度. 如果子序列长度相同,那么末尾小的子序列更有可能成为最长的子序列.所以就用一个l数组存当子序列长度为len时最小的末尾元素.如果序列下一个值比l[len]大,说明上升子序列长度增加,那么l[len++]=a[i];如果是小,就想办法把它插入到了l数组中.... HDU 1950 说白了就是求lis…
一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个序列中的部分(不要求连续),这个就叫做公共子序列,然后最长公共子序列自然就是所有的子序列中最长的啦. 既然是动态规划,难点肯定是在转移方程那了.首先我们用一张网上流传的图: 我个人觉得这张图最好的阐述了这个问题的解法.下面说一下我的理解:首先我们要考虑怎么表示LCS中的各个状态,这个知道的可能觉得很…
LCS:给出两个序列S1和S2,求出的这两个序列的最大公共部分S3就是就是S1和S2的最长公共子序列了.公共部分 必须是以相同的顺序出现,但是不必要是连续的. 选出最长公共子序列.对于长度为n的序列,其子序列共有2的n次方个,这样的话这种算法的时间复杂度就为指数级 了,这显然不太适合用于序列很长的求解了. 解法二:既然学到了动态规划,就来看看能否用动态规划的思想来解决这个问题.要使用动态规划,必须满足两个条 件:有最优子结构和重叠子问题.为了便于学习,我们先来了解下这两个概念. 如果问题的一个最…
一.本文内容 最长递增子序列的两种动态规划算法实现,O(n^2)及O(nlogn).     二.问题描述 最长递增子序列:给定一个序列,从该序列找出最长的 升序/递增 子序列. 特点:1.子序列不要求连续: 2.子序列在原序列中按严格(strictly)升序排序: 3.最长递增子序列不唯一.   注:下文最长递增子序列用缩写LIS表示.   example: 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15   对应的LIS: 0, 2,…
原题链接:1134 最长递增子序列 题目分析:长度为  的数列  有多达  个子序列,但我们应用动态规划法仍可以很高效地求出最长递增子序列().这里介绍两种方法. 先考虑用下列变量设计动态规划的算法.这里设输入数列的第一个数为  . 一位数组, 为由  到  中的部分元素构成且最后选择了  的  的长度. 一位数组, 为由  到  中的部分元素构成且最后选择了  的  的倒数第二个元素的位置(记录当前以得出的最长递增子序列中,各元素前面一个元素的位置) 有了这些变量,动态规划法求  的算法便可以…
软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对于算法导论的版本,增加了一个多分支回溯,即存储回溯方向时出现了向上向左都可以的情况时,这时候就代表可能有多个最长公共子序列.当回溯到这里时,让程序带着存储已经回溯的字符串的栈进行递归求解,当走到左上角的时候输出出来 # coding=utf-8 class LCS(): def input(self…
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 S 称为已知序列的最长公共子序列. 例如:输入两个字符串 BDCABA 和 ABCBDAB,字符串 BCBA 和 BDAB 都是是它们的最长公共子序列,则输出它们的长度 4,并打印任意一个子序列. (Note: 不要求连续) 判断字符串相似度的方法之一 - LCS 最长公共子序列越长,越相似. Ju…
1. 什么是 LCSs? 什么是 LCSs? 好多博友看到这几个字母可能比较困惑,因为这是我自己对两个常见问题的统称,它们分别为最长公共子序列问题(Longest-Common-Subsequence)和最长公共子串(Longest-Common-Substring)问题.这两个问题非常的相似,所以对不熟悉的同学来说,有时候很容易被混淆.下面让我们去好好地理解一下两者的区别吧. 1.1 子序列 vs 子串 子序列是有序的,但不一定是连续,作用对象是序列. 例如:序列 X = <B, C, D,…
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与母串保持一致,我们将其称为公共子序列.最长公共子序列(Longest Common Subsequence, LCS),顾名思义,是指在所有的子序列中最长的那一个.子串是要求更严格的一种子序列,要求在母串中连续地出现.在上述例子的中,最长公共子序列为blog(cnblogs, belong),最长公…