Deep Learning 优化方法总结】的更多相关文章

Stochastic Gradient Descent (SGD) SGD的参数 在使用随机梯度下降(SGD)的学习方法时,一般来说有以下几个可供调节的参数: Learning Rate 学习率 Weight Decay 权值衰减 Momentum 动量 Learning Rate Decay 学习率衰减 再此之中只有第一的参数(Learning Rate)是必须的,其余部分都是为了提高自适应性的参数,也就是说后3个参数不需要时可以设为0. Learning Rate 学习率决定了权值更新的速度…
Deep Learning and Shallow Learning 由于 Deep Learning 现在如火如荼的势头,在各种领域逐渐占据 state-of-the-art 的地位,上个学期在一门课的 project 中见识过了 deep learning 的效果,最近在做一个东西的时候模型上遇到一点瓶颈于是终于决定也来了解一下这个魔幻的领域. 据说 Deep Learning 的 break through 大概可以从 Hinton 在 2006 年提出的用于训练 Deep Belief…
A Review on Deep Learning Techniques Applied to Semantic Segmentation 2018-02-22  10:38:12   1. Introduction: 语义分割是计算机视觉当中非常重要的一个课题,其广泛的应用于各种类型的数据,如:2D image,video,and even 3D or volumetric data. 最近基于 deep learning 的方法,取得了非常巨大的进展,在语义分割上也是遥遥领先于传统算法. 本…
Deep Learning 方向的部分 Paper ,自用.一 RNN 1 Recurrent neural network based language model RNN用在语言模型上的开山之作 2 Statistical Language Models Based on Neural Networks Mikolov的博士论文,主要将他在RNN用在语言模型上的工作进行串联 3 Extensions of Recurrent Neural Network Language Model 开山之…
转载 http://hi.baidu.com/chb_seaok/item/6307c0d0363170e73cc2cb65 个人阅读的Deep Learning方向的paper整理,分了几部分吧,但有些部分是有交叉或者内容重叠,也不必纠结于这属于DNN还是CNN之类,个人只是大致分了个类.目前只整理了部分,剩余部分还会持续更新. 一 RNN 1 Recurrent neural network based language model RNN用在语言模型上的开山之作 2 Statistical…
最近关注了一些Deep Learning在Information Retrieval领域的应用,得益于Deep Model在对文本的表达上展现的优势(比如RNN和CNN),我相信在IR的领域引入Deep Model也会取得很好的效果. IR的范围可能会很广,比如传统的Search Engine(query retrieves documents),Recommendation System(user retrieves items)或者Retrieval based Question Answe…
1. 深度学习流程简介 1)一次性设置(One time setup)          -激活函数(Activation functions) - 数据预处理(Data Preprocessing) - 权重初始化(Weight Initialization) - 正则化(Regularization:避免过拟合的一种技术) - 梯度检查(Gradient checking) 2)动态训练(Training dynamics)          - 跟踪学习过程 (Babysitting th…
目前,深度网络(Deep Nets)权值训练的主流方法还是梯度下降法(结合BP算法),当然在此之前可以用无监督的方法(比如说RBM,Autoencoder)来预训练参数的权值,而梯度下降法应用在深度网络中的一个缺点是权值的迭代变化值会很小,很容易收敛到的局部最优点:另一个缺点是梯度下降法不能很好的处理有病态的曲率(比如Rosenbrock函数)的误差函数.而本文中所介绍的Hessian Free方法(以下简称HF)可以不用预训练网络的权值,效果也还不错,且其适用范围更广(可以用于RNN等网络的学…
本文主要参考Ensemble Methods for Deep Learning Neural Networks一文. 1. 前言 神经网络具有很高的方差,不易复现出结果,而且模型的结果对初始化参数异常敏感. 使用集成模型可以有效降低神经网络的高方差(variance). 2. 使用集成模型降低方差 训练多个模型,并将预测结果结合到一起,能够降低方差. 多模型集成能起到作用的前提是,每个模型有自己的特点,每个模型预测出的误差是不同的. 简单的集成方式就是将预测结果取平均,该方法起作用的原因是,不…
浅谈深度学习(Deep Learning)的基本思想和方法  参考:http://blog.csdn.net/xianlingmao/article/details/8478562 深度学习(Deep Learning),又叫Unsupervised Feature Learning或者Feature Learning,是目前非常热的一个研究主题. 本文将主要介绍Deep Learning的基本思想和常用的方法. 一. 什么是Deep Learning? 实际生活中,人们为了解决一个问题,如对象…