bind1st()和bind2nd()是两个函数,用于将二元算子转成一元算子. 何谓二元算子? 比如< > =等等这些就是二元算子,即需要两个操作数的运算符. 何谓一元算子? 比如++ --等等这些就是一元算子,即只需要一个操作数的运算符. bind2st()的使用 其实这个函数并没有强大到可以真的实现二元算子转一元算子,只是在特定的场合用起来会很有用而已.看下面的例子 int main() { int a[] = {1, 2, 100, 200}; // 用数组a来初始化arr std::v…
std::bind1st 和 std::bind2nd将二元函数转换为一元函数,具体用法参加下面的代码. 代码介绍了两种使用方式,第一种是使用std::less和std::greater,第二种是使用自定义的仿函数. #include <iostream> #include <vector> #include <string> #include <iterator> #include <algorithm> #include <functi…
1.引言 bind1st和bind2nd函数用于将一个二元函数对象(binary functor,bf)转换成一元函数对象(unary functor,uf).为了达到这个目的,它们需要两个参数:要转换的bf和一个值(v). 可能这么解释以后大家还不是很清楚,那么就说点白话吧.我们在做比较的时候所写的表达式像 x > k ,x < k,这里的k是一个参数表示你程序里面的表达式要和k值去比较.上面这两个表达式对应的应该是bind2nd ,简单的理解就是把k作为比较表达式的第二个参数.如果使用bi…
1. cv2.Scharr(src,ddepth, dx, dy), 使用Scharr算子进行计算 参数说明:src表示输入的图片,ddepth表示图片的深度,通常使用-1, 这里使用cv2.CV_64F允许结果是负值, dx表示x轴方向算子,dy表示y轴方向算子 2.cv2.laplacian(src, ddepth) 使用拉普拉斯算子进行计算 参数说明: src表示输入的图片,ddepth表示图片的深度,这里使用cv2.CV_64F允许结果是负值 scharr算子, 从图中我们可以看出sch…
本篇文章中,我们将一起学习OpenCV中边缘检测的各种算子和滤波器——Canny算子,Sobel算子,Laplace算子以及Scharr滤波器.文章中包含了五个浅墨为大家准备的详细注释的博文配套源代码.在介绍四块知识点的时候分别一个,以及最后的综合示例中的一个.文章末尾提供配套源代码的下载. **** 给大家分享一个OpenCv中写代码是节约时间的小常识.其实OpenCv中,不用nameWindow,直接imshow就可以显示出窗口.大家看下文的示例代码就可以发现,浅墨在写代码的时候并没有用na…
收入囊中 拉普拉斯算子 LOG算子(高斯拉普拉斯算子) OpenCV Laplacian函数 构建自己的拉普拉斯算子 利用拉普拉斯算子进行图像的锐化 葵花宝典 在OpenCV2马拉松第14圈--边缘检測(Sobel,prewitt,roberts)  我们已经认识了3个一阶差分算子 拉普拉斯算子是二阶差分算子.为什么要增加二阶的算子呢?试想一下,假设图像中有噪声,噪声在一阶导数处也会取得极大值从而被当作边缘.然而求解这个极大值也不方便.採用二阶导数后,极大值点就为0了.因此值为0的地方就是边界.…
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python 图像处理 OpenCV (3):图像属性.图像感兴趣 ROI 区域及通道处理」 「Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间」 「Python 图像处理 OpenCV (5):图像的几何变换」 「Python 图像处理 OpenCV (6):图像的阈值处理」 「Py…
一.基本介绍 rdd.aggregateByKey(3, seqFunc, combFunc) 其中第一个函数是初始值 3代表每次分完组之后的每个组的初始值. seqFunc代表combine的聚合逻辑 每一个mapTask的结果的聚合成为combine combFunc reduce端大聚合的逻辑 ps:aggregateByKey默认分组 二.代码 from pyspark import SparkConf,SparkContext from __builtin__ import str c…
#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; int main(int argc, char** argv) { Mat src = imread("test.jpg"); Mat dst, gray,grad_x, gray_y,abs_grad_x,abs_grad_y; //转成灰度图 cvtColor(src, gray…
实现思路: 1,将传进来的图片矩阵用算子进行卷积求和(卷积和取绝对值) 2,用新的矩阵(与原图一样大小)去接收每次的卷积和的值 3,卷积图片所有的像素点后,把新的矩阵数据类型转化为uint8 注意: 必须对求得的卷积和的值求绝对值:矩阵数据类型进行转化. 完整代码: import cv2 import numpy as np # robert 算子[[-1,-1],[1,1]] def robert_suanzi(img): r, c = img.shape r_sunnzi = [[-1,-1…