504. Inverted Index (Map Reduce) lintcode】的更多相关文章

https://www.lintcode.com/problem/inverted-index-map-reduce/description -- decription of the map reduce problem 1. click the submit button to view the problem. 2. logic of map reduce, each time, they only deal with one key value pair (for map and redu…
#paip.提升效率---filter map reduce 的java 函数式编程实现 ======================================================== #----------------------index索引------------------ ++函数式编程的好处儿以及缺点 ++actual code 实际代码如下 ---filter 实现... --- map 实现.. ---reduce ---调用 ##函数式编程的好处儿以及缺点 -…
Lodash用来操作对象和集合,比Underscore拥有更多的功能和更好的性能. 官网:https://lodash.com/引用:<script src="//cdnjs.cloudflare.com/ajax/libs/lodash.js/2.4.1/lodash.min.js"></script>安装:npm install lodash 首先通过npm安装lodash:npm i --save lodash 在js文件中引用lodash:var _ =…
完成了第一个mapReduce例子,记录一下. 实验环境: hadoop在三台ubuntu机器上部署 开发在window7上进行 hadoop版本2.2.0 下载了hadoop-eclipse-plugin-2.2.0.jar放入eclipse的plugin文件夹中,重启后有如下标识 下方右击: add hadoop location 此时,eclipse 左侧会有 上图即简单的实现了一个嵌于eclipse中的用于访问hdfs系统的client端,其中可以增删改查文件. ------------…
MapReduce是一种函数式编程模型,用于大规模数据集(大于1TB)的并行运算.概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性.它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上. Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduce(归约)函数,用来保证所有映射的键值对中的每一个共享相同的键组. 然而在python中,ma…
const app=new Vue({ el:'#app', data:{ books:[{ id:1, name:"算法导论", data: '2006-1', price:39.00, count:1 },{ id:2, name:"算法导论", data: '2006-1', price:39.00, count:1 },{ id:3, name:"算法导论", data: '2006-1', price:39.00, count:1 },…
原题网址:https://www.lintcode.com/problem/word-count-map-reduce/description 描述 使用 map reduce 来计算单词频率https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html#Example%3A+WordCount+v1.0 您在真实的面试中是否遇到过这个题?  是 样例 chunk1: "Google Bye GoodBye Hadoop code"…
优选阶段通过分离计算对象来实现多个node和多种算法的并行计算,并且通过基于二级索引来设计最终的存储结果,从而达到整个计算过程中的无锁设计,同时为了保证分配的随机性,针对同等优先级的采用了随机的方式来进行最终节点的分配,如果大家后续有类似的需求,不妨可以借鉴借鉴 1. 设计基础 1.1 两阶段: 单点与聚合 在进行优选的时候,除了最后一次计算,在进行针对单个算法的计算的时候,会分为两个阶段:单点和聚合 在单点阶段,会根据当前算法针对单个node计算 在聚合阶段,则会根据当前单点阶段计算完成后,来…
优选阶段通过分map/reduce模式来实现多个node和多种算法的并行计算,并且通过基于二级索引来设计最终的存储结果,从而达到整个计算过程中的无锁设计,同时为了保证分配的随机性,针对同等优先级的采用了随机的方式来进行最终节点的分配,如果大家后续有类似的需求,不妨可以借鉴借鉴 1. 设计基础 1.1 两阶段: 单点与聚合 在进行优选的时候,除了最后一次计算,在进行针对单个算法的计算的时候,会分为两个阶段:单点和聚合 在单点阶段,会根据当前算法针对单个node计算 在聚合阶段,则会根据当前单点阶段…
上一节分析了Job由JobClient提交到JobTracker的流程,利用RPC机制,JobTracker接收到Job ID和Job所在HDFS的目录,够早了JobInProgress对象,丢入队列,另一个线程从队列中取出JobInProgress对象,并丢入线程池中执行,执行JobInProgress的initJob方法,我们逐步分析. public void initJob(JobInProgress job) { if (null == job) { LOG.info("Init on…