F - GCD - Extreme (II) UVA - 11426】的更多相关文章

Given the value of N, you will have to find the value of G. The definition of G is given below:…
Given the value of N , you will have to nd the value of G . The de nition of G is given below: G = i<N ∑ i =1 j N ∑ j = i +1 GCD ( i; j ) Here GCD ( i; j ) means the greatest common divisor of integer i and integer j . For those who have trouble unde…
G(i) = (gcd(1, i) + gcd(2, i) + gcd(3, i) + .....+ gcd(i-1, i)) ret = G(1) + G(2) + G(3) +.....+ G(n); 对于gcd(x,i),我们设gcd(x,i) = m 即x和i的最大公约数为m  则x/m 和 i/m 互质 然后我们求出于i/m互质的有多少个 是不是就是求出了与i最大公约数为m的有多少个..用欧拉函数既能求出个数  ...即为phi(i/m)个  用双重循环  外层循环为m内层循环为i,…
Code: #include<cstdio> using namespace std; const int maxn=4000005; const int R=4000002; const int N=4000002; long long sumv[maxn],f[maxn]; int phi[maxn],prime[maxn],vis[maxn]; void solve(){ phi[1]=1; int cnt=0; for(int i=2;i<=R;++i){ if(!vis[i])…
题目大意: 累加从1到n,任意两个数的gcd(i,j)(1=<i<n&&i<j<=n). 题解:假设a<b,如果gcd(a,b)=c.则gcd(a/c,b/c)=1.也就是说a/c和b/c互质,而与a/c互质的数一共有oula(a/c)个,也就是说这里的b/c一共有oula(a/c)种选择,同理,gcd(a,b)=c,a的选择就会有,oula(b/c)种. 所以 gcd(x,y)=1  ,枚举每一个x,然后在枚举x的k倍,答案就是ans[x*k]+=oula(…
UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N.求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gcd(1, n) + gcd(2, n) + ... + gcd(n - 1, n).这种话,就能够得到递推式S(n) = f(2) + f(3) + ... + f(n) ==> S(n) = S(n - 1) + f(n);. 这样问题变成怎样求f(n).设g(n, i),表示满足gcd(x, n)…
转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Problem JGCD Extreme (II)Input: Standard Input Output: Standard Output Given the value of N, you will have to find the value of G. The definition of G is given below: Here GCD(i,j) means the…
UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13015 143295493160 Solution 这道题我用莫比乌斯反演和欧拉函数都写了一遍,发现欧拉函数比莫比乌斯反演优秀? 求所有\(gcd=k\)的数对的个数,记作\(f[k],ans=\sum_{i=1}^{n}(f[i]-1)\),为什么还要-1,我们注意到\(j=i+1\),自己与自己…
/** 题目:GCD - Extreme (II) 链接:https://vjudge.net/contest/154246#problem/O 题意: for(i=1;i<N;i++) for(j=i+1;j<=N;j++) { G+=gcd(i,j); } 思路: 设f[n] = gcd(1,n)+gcd(2,n)+gcd(3,n)+...+gcd(n-1,n); s[n] = f[1]+f[2]+...+f[n]; 则:s[n] = f[n]+s[n-1]; f[n]的约数个数一般少于n…
[UVa11426]GCD - Extreme (II)(莫比乌斯反演) 题面 Vjudge 题解 这.. 直接套路的莫比乌斯反演 我连式子都不想写了 默认推到这里把.. 然后把\(ans\)写一下 \[ans=\sum_{d=1}^nd\sum_{i=1}^{n/d}\mu(i)[\frac{n}{id}]^2\] 令\(T=id\) 然后把\(T\)提出来 \[ans=\sum_{T=1}^n[\frac{n}{T}]^2\sum_{d|T}d\mu(\frac{T}{d})\] 后面那一堆…