RSA最终加密.解密都要用到模乘的幂运算,简称模幂运算. 回忆一下RSA,从明文A到B B=Ae1%N 对B解密,就是 A=Be2%N 其中,一般来说,加密公钥中的e1一般会比较小,取65537居多,但解密的时候,这个e2是一个非常非常大的数,显然,直接通过e2次模乘来解密是不现实的. 为了让RSA的加密.解密成为现实,我们必须要找一个好的算法来做模幂运算. 借上一节我设定的符号,以区别于传统上的幂的数学表示, 定义a#b为a和b的模乘, 定义a##n为n个a的模乘,或称a的n阶模乘. a =…