如果一个矩阵的每一方向由左上到右下的对角线上具有相同元素,那么这个矩阵是托普利茨矩阵. 给定一个 M x N 的矩阵,当且仅当它是托普利茨矩阵时返回 True. 示例 1: 输入: matrix = [   [1,2,3,4],   [5,1,2,3],   [9,5,1,2] ] 输出: True 解释: 在上述矩阵中, 其对角线为: "[9]", "[5, 5]", "[1, 1, 1]", "[2, 2, 2]", &q…
A matrix is Toeplitz if every diagonal from top-left to bottom-right has the same element. Now given an M x N matrix, return True if and only if the matrix is Toeplitz. Example 1: Input: matrix = [   [1,2,3,4],   [5,1,2,3],   [9,5,1,2] ] Output: True…
766. 托普利茨矩阵 如果一个矩阵的每一方向由左上到右下的对角线上具有相同元素,那么这个矩阵是托普利茨矩阵. 给定一个 M x N 的矩阵,当且仅当它是托普利茨矩阵时返回 True. 示例 1: 输入: matrix = [ [1,2,3,4], [5,1,2,3], [9,5,1,2] ] 输出: True 解释: 在上述矩阵中, 其对角线为: "[9]", "[5, 5]", "[1, 1, 1]", "[2, 2, 2]&quo…
问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/3748 访问. 如果一个矩阵的每一方向由左上到右下的对角线上具有相同元素,那么这个矩阵是托普利茨矩阵. 给定一个 m * n 的矩阵,当且仅当它是托普利茨矩阵时返回 True. 输入:  matrix = [   [1,2,3,4],   [5,1,2,3],   [9,5,1,2] ] 输出: True 解释:在上述矩阵中, 其对角线为:"[9]",…
1.题目 如果一个矩阵的每一方向由左上到右下的对角线上具有相同元素,那么这个矩阵是托普利茨矩阵. 给定一个 M x N 的矩阵,当且仅当它是托普利茨矩阵时返回 True. 示例 1: 输入: matrix = [   [1,2,3,4],   [5,1,2,3],   [9,5,1,2] ] 输出: True 解释: 在上述矩阵中, 其对角线为: "[9]", "[5, 5]", "[1, 1, 1]", "[2, 2, 2]"…
1. 具体题目 如果一个矩阵的每一方向由左上到右下的对角线上具有相同元素,那么这个矩阵是托普利茨矩阵.给定一个 M x N 的矩阵,当且仅当它是托普利茨矩阵时返回 True. 示例 1: 输入: matrix = [ [1,2,3,4],  [5,1,2,3],  [9,5,1,2]]输出: True解释: 在上述矩阵中, 其对角线为: "[9]", "[5, 5]", "[1, 1, 1]", "[2, 2, 2]", &q…
A matrix is Toeplitz if every diagonal from top-left to bottom-right has the same element. Now given an M x N matrix, return True if and only if the matrix is Toeplitz. Example 1: Input: matrix = [[1,2,3,4],[5,1,2,3],[9,5,1,2]] Output: True Explanati…
A matrix is Toeplitz if every diagonal from top-left to bottom-right has the same element. Now given an M x N matrix, return True if and only if the matrix is Toeplitz. Example 1: Input: matrix = [[1,2,3,4],[5,1,2,3],[9,5,1,2]] Output: True Explanati…
题目要求 A matrix is Toeplitz if every diagonal from top-left to bottom-right has the same element. Now given an M x N matrix, return True if and only if the matrix is Toeplitz. 题目分析及思路 给定一个M x N的矩阵,判断这个矩阵是不是Toeplitz.符合条件的矩阵应满足从左上到右下的每条对角线上的元素都相同.我们可以发现同…
之所以专门定义两个新的概念,在于它们特殊的形式,带来的特别的形式. 1. Toeplitz matrix 对角为常数: n×n 的矩阵 A 是 Toepliz 矩阵当且仅当,对于 Ai,j 有: Ai,j=Ai+1,j+1=ai−j ⎡⎣⎢⎢⎢⎢⎢⎢afghibafghcbafgdcbafedcba⎤⎦⎥⎥⎥⎥⎥⎥ . i−j 表示行号减去列号,对于 n×n 的 Toeplize 矩阵共 2n−1 个不同的值,即 a1−n,a2−n,-,a−1,0,a1,-,an−1. ⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢…