引言 上一篇博客整理了一下SVM分类算法的基本理论问题,它分类的基本思想是利用最大间隔进行分类,处理非线性问题是通过核函数将特征向量映射到高维空间,从而变成线性可分的,但是运算却是在低维空间运行的.考虑到数据中可能存在噪音,还引入了松弛变量. 理论是抽象的,问题是具体的.站在岸上学不会游泳,光看着梨子不可能知道梨子的滋味.本篇博客就是用SVM分类算法解决一个经典的机器学习问题--手写数字识别.体会一下SVM算法的具体过程,理理它的一般性的思路. 问题的提出 人类视觉系统是世界上众多的奇迹之一.看…