LeetCode_172. Factorial Trailing Zeroes】的更多相关文章

172. Factorial Trailing Zeroes Easy Given an integer n, return the number of trailing zeroes in n!. Example 1: Input: 3 Output: 0 Explanation: 3! = 6, no trailing zero. Example 2: Input: 5 Output: 1 Explanation: 5! = 120, one trailing zero. Note: You…
Factorial Trailing Zeroes Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. Credits:Special thanks to @ts for adding this problem and creating all test cases. 对n!做质因数分解n!=2x*…
/* * Problem 172: Factorial Trailing Zeroes * Given an integer n, return the number of trailing zeroes in n!. * Note: Your solution should be in logarithmic time complexity. */ /* * Solution 1 * 对于每一个数字,累计计算因子10.5.2数字出现的个数,结果等于10出现的个数,加上5和2中出现次数较少的 *…
Factorial Trailing Zeroes Given an integer n, return the number of trailing zeroes in n!. 题目意思: n求阶乘以后,其中有多少个数字是以0结尾的. 方法一: class Solution: # @return an integer def trailingZeroes(self, n): res = 0 if n < 5: return 0 else: return n/5+ self.trailingZe…
172. 阶乘后的零 172. Factorial Trailing Zeroes 题目描述 给定一个整数 n,返回 n! 结果尾数中零的数量. LeetCode172. Factorial Trailing Zeroes 示例 1: 输入: 3 输出: 0 解释: 3! = 6,尾数中没有零. 示例 2: 输入: 5 输出: 1 解释: 5! = 120,尾数中有 1 个零. 说明: 你算法的时间复杂度应为 O(log n). Java 实现 递归 class Solution { publi…
数学题 172. Factorial Trailing Zeroes Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. (Easy) 分析:求n的阶乘中末位0的个数,也就是求n!中因数5的个数(2比5多),简单思路是遍历一遍,对于每个数,以此除以5求其因数5的个数,但会超时. 考虑到一个数n比他小…
Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. Credits:Special thanks to @ts for adding this problem and creating all test cases. 这道题并没有什么难度,是让求一个数的阶乘末尾0的个数,也就是要找乘数中10的个数,…
原题链接在这里:https://leetcode.com/problems/factorial-trailing-zeroes/ 求factorial后结尾有多少个0,就是求有多少个2和5的配对. 但是2比5多了很多,所以就是求5得个数.但是有的5是叠加起来的比如 25,125是5的幂数,所以就要降幂. e.g. n = 100, n/5 =20, n/25= 4, n/125=0,所以加起来就有24个0. O(logn)解法: 一个更聪明的解法是:考虑n!的质数因子.后缀0总是由质因子2和质因…
Given an integer n, return the number of trailing zeroes in n!. Example 1: Input: 3 Output: 0 Explanation: 3! = 6, no trailing zero. Example 2: Input: 5 Output: 1 Explanation: 5! = 120, one trailing zero. Note: Your solution should be in logarithmic…
题目 Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. 分析 Note中提示让用对数的时间复杂度求解,那么如果粗暴的算出N的阶乘然后看末尾0的个数是不可能的. 所以仔细分析,N! = 1 * 2 * 3 * ... * N 而末尾0的个数只与这些乘数中5和2的个数有关,因为每出现一对5和2就会产生…