终身机器学习(Lifelong Machine Learning)综述 2015年10月23日 17:34:57 qrlhl 阅读数 7805更多 分类专栏: 机器学习   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/qrlhl/article/details/49364173 大概有十几天了没有回来更新博客了吧,这期间遇到了大大小小各种事情,最悲伤的事应该是跟我关系最好的一个哥们的父…
我在 B 站学机器学习(Machine Learning)- 吴恩达(Andrew Ng)[中英双语] 视频地址:https://www.bilibili.com/video/av9912938/ tensorflow:http://tensorflow123.com…
机器学习(Machine Learning)是一门专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能的学科.…
domain adaptation(域适配)是一个连接机器学习(machine learning)与迁移学习(transfer learning)的新领域.这一问题的提出在于从原始问题(对应一个 source data distribution)学习到的模型能够很好地适应一个与之相不同的目标问题(对应一个 target data distribution).比如垃圾邮件过滤问题(spam filtering problems). 1. 数学描述 X:input space(description…
算法原理 K近邻是机器学习中常见的分类方法之间,也是相对最简单的一种分类方法,属于监督学习范畴.其实K近邻并没有显式的学习过程,它的学习过程就是测试过程.K近邻思想很简单:先给你一个训练数据集D,包括每个训练样本对应的标签.然后给你一个新的测试样本T,问你测试样本的标签预测是什么,K近邻的方法就是找到T到D中每一个样本的相似度,然后根据相似度大小对D中样本排序,取前K个最相似的样本的标签的众数作为测试样本T的标签(即前K个样本投票决定).具体相似度怎么度量,是根据测试样本到D中每个训练样本的距离…
机器学习 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0 机器学习是人工智能的一个分支.人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然.清晰的脉络.显然,机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题.机器学习在近30多年已发展为一门多领域交叉学科,涉及概率论.统计学.逼近论.凸分析.计算复杂性理论等多门学科.…
机器学习实战 (豆瓣) https://book.douban.com/subject/24703171/ 机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中萃取有价值的信息或模式,成为各行业求生存.谋发展的决定性手段,这使得这一过去为分析师和数学家所专属的研究领域越来越为人们所瞩目. 本书第一部分主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法.朴素贝叶斯算法.Logistic回归算法.支持向量机.Ada…
组要组成部分:监督学习(supervised learning),非监督学习(unsupervised learning),半监督学习(semi-supervised learning),强化学习(reinforcement learning). 三要素:模型(model),策略(strategy),算法(algorithm). 模型就是设计一种机器学习模型(神经网络的网络结构),策略就是定义模型中的函数中什么是最优的(loss函数的选取),算法是如何找到最优值(梯度下降,牛顿法,拉普拉斯近似)…
关于机器学习有两个相关的定义: 1)给计算机赋予没有固定编程的学习能力的研究领域. 2)一种计算机的程序,能从一些任务(T)和性能的度量(P),经验(E)中进行学习.在学习中,任务T的性能P能够随着P能去改善经验E. 例子:玩跳棋游戏 E=玩了很多调情游戏积累的经验. T=玩跳棋游戏的任务. P=该程序赢下比赛的可能性. 一般情况下,任何机器学习的问题我们都可以分类为: 1)监督学习(Supervised learning). 2)非监督学习(Unsupervised learning).…
一.机器学习基本概念总结 分类(classification):目标标记为类别型的数据(离散型数据)回归(regression):目标标记为连续型数据 有监督学习(supervised learning):训练集有类别标记无监督学习(unsupervised learning):训练集无类别标记半监督学习(semi-supervised learning):有类别标记的训练集+无类别标记的训练集 机器学习步骤的框架: step1:把数据拆分为训练集和测试集 step2:用训练集和特征集的特征向量…