AVL树(二)之 C++的实现】的更多相关文章

概要 上一章通过C语言实现了AVL树,本章将介绍AVL树的C++版本,算法与C语言版本的一样. 目录 1. AVL树的介绍2. AVL树的C++实现3. AVL树的C++测试程序 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3577360.html 更多内容: 数据结构与算法系列 目录 (01) AVL树(一)之 图文解析 和 C语言的实现(02) AVL树(二)之 C++的实现(03) AVL树(三)之 Java的实现 AVL树的介绍 AVL树是…
AVL树概念 前面学习二叉查找树和二叉树的各种遍历,但是其查找效率不稳定(斜树),而二叉平衡树的用途更多.查找相比稳定很多.(欢迎关注数据结构专栏) AVL树是带有平衡条件的二叉查找树.这个平衡条件必须要容易保持.而且要保证它的深度是O(logN). AVL的条件是左右树的高度差(平衡因子)不大于1:并且它的每个子树也都是平衡二叉树. 对于平衡二叉树的最小个数,n0=0;n1=1;nk=n(k-1)+n(k-2)+1;(求法可以类比斐波那契!) 难点:AVL是一颗二叉排序树,用什么样的规则或者规…
AVL树是高度平衡的而二叉树.它的特点是:AVL树中任何节点的两个子树的高度最大差别为1. 旋转 如果在AVL树中进行插入或删除节点后,可能导致AVL树失去平衡.这种失去平衡的可以概括为4种姿态:LL(左左),LR(左右),RR(右右)和RL(右左).下面给出它们的示意图: 1) LL:LeftLeft,也称为"左左".插入或删除一个节点后,根节点的左子树的左子树还有非空子节点,导致"根的左子树的高度"比"根的右子树的高度"大2,导致AVL树失去…
概要 前面分别介绍了AVL树"C语言版本"和"C++版本",本章介绍AVL树的Java实现版本,它的算法与C语言和C++版本一样.内容包括:1. AVL树的介绍2. AVL树的Java实现3. AVL树的Java测试程序 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3577479.html 更多内容: 数据结构与算法系列 目录 (01) AVL树(一)之 图文解析 和 C语言的实现(02) AVL树(二)之 C++的实…
概要 本章介绍AVL树.和前面介绍"二叉查找树"的流程一样,本章先对AVL树的理论知识进行简单介绍,然后给出C语言的实现.本篇实现的二叉查找树是C语言版的,后面章节再分别给出C++和Java版本的实现.建议:若您对"二叉查找树"不熟悉,建议先学完"二叉查找树"再来学习AVL树. 目录 1. AVL树的介绍2. AVL树的C实现3. AVL树的C实现(完整源码)4. AVL树的C测试程序 转载请注明出处:http://www.cnblogs.com…
本文关于AVL树的介绍引自博文AVL树(二)之 C++的实现,与二叉查找树相同的部分则不作介绍直接引用:代码实现是在本文的基础上自己实现且继承自上一篇博文二叉查找树. 1.AVL树的介绍 AVL树是高度平衡的而二叉树.它的特点是:AVL树中任何节点的两个子树的高度最大差别为1. 上面的两张图片,左边的是AVL树,它的任何节点的两个子树的高度差别都<=1:而右边的不是AVL树,因为7的两颗子树的高度相差为2(以2为根节点的树的高度是3,而以8为根节点的树的高度是1). 2.节点的旋转 如果在AVL…
03-树1. List Leaves (25) Given a tree, you are supposed to list all the leaves in the order of top down, and left to right. Input Specification: Each input file contains one test case. For each case, the first line gives a positive integer N (<=10) wh…
1.为什么要有平衡二叉树? 上一节我们讲了一般的二叉查找树, 其期望深度为O(log2n), 其各操作的时间复杂度O(log2n)同时也是由此决定的.但是在某些情况下(如在插入的序列是有序的时候), 二叉查找树就会退化成近似链或链.如下图(b). 此时, 其操作的时间复杂度退化成线性的,即O(n).我们可以通过随机化建立二叉搜索树来尽量的避免这种情况,但是在进行了多次的操作之后,由于在删除时,我们总是选择将待删除节点的后继代替它本身,这样就会造成总是右边的节点数目减少,以至于树向左偏沉.这同时也…
AVL树的基本概念 AVL树是一种高度平衡的(height balanced)二叉搜索树:对每一个结点x,x的左子树与右子树的高度差(平衡因子)至多为1. 有人也许要问:为什么要有AVL树呢?它有什么作用呢? 我们先来看看二叉搜索树吧(因为AVL树本质上是一棵二叉搜索树),假设有这么一种极端的情况:二叉搜索树结点的插入顺序为1,2,3,4,5,也就是: 显而易见,这棵二叉搜索树已经其退化成一个链表了,也就是说,它在查找上的优势已经全无了—— 在这种情况下,查找一个结点的时间复杂度是O(n)! 如…
二叉搜索树只有保持平衡时其查找效率才会高. 要保持二叉搜索树的平衡不是一件易事.不过还是有一些非常经典的办法可以做到,其中最好的方法就是将二叉搜索树实现为AVL树. AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 "An algorithm for the organization of information" 中发表了它.AVL树是一种特殊类型的二叉树,它的每个结点都保存一份额外的信息:结点的平衡因子. 结点…
最近学习了二叉搜索树中的AVL树,特在此写一篇博客小结. 1.引言 对于二叉搜索树而言,其插入查找删除等性能直接和树的高度有关,因此我们发明了平衡二叉搜索树.在计算机科学中,AVL树是最先发明的自平衡二叉搜索树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.对于N个节点的AVL树,由于树高被限制为lgN,因此其插入查找删除操作耗时为O(lgN). 2.旋转 在讲解关键步骤插入与删除以前,首先我们先定义一些辅助用的操作:旋转.旋转分为左旋和右旋,其示意图如下:   相…
package Demo; public class AVLtree { private Node root; //首先定义根节点 private static class Node{ //定义Node指针参数 private int key; //节点 private int balance; //平衡值 private int height; //树的高度 private Node left; //左节点 private Node right; //右节点 private Node pare…
二叉搜索树只有保持平衡时其查找效率才会高. 要保持二叉搜索树的平衡不是一件易事.不过还是有一些非常经典的办法可以做到,其中最好的方法就是将二叉搜索树实现为AVL树. AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 "An algorithm for the organization of information" 中发表了它.AVL树是一种特殊类型的二叉树,它的每个结点都保存一份额外的信息:结点的平衡因子. 结点…
1.二叉搜索树 1.1定义 是一棵二叉树,每个节点一定大于等于其左子树中每一个节点,小于等于其右子树每一个节点 1.2插入节点 从根节点开始向下找到合适的位置插入成为叶子结点即可:在向下遍历时,如果要插入的值比节点的值小,则向节点的左子树遍历,大于等于则向右子树遍历,如此循环. 1.3删除节点 删除节点x有3种情况: 1.x是叶子结点,则直接删除: 2.x只有一棵子树(左子树或者右子树),则直接将x的父结点指向x的孩子,再删除x节点,如果x是根结点,则要更新x的孩子为树根: 3.x有两棵子树,则…
树-二叉搜索树-AVL树 树 树的基本概念 节点的度:节点的儿子数 树的度:Max{节点的度} 节点的高度:节点到各叶节点的最大路径长度 树的高度:根节点的高度 节点的深度(层数):根节点到该节点的路径长度 树的遍历 ·前序遍历:根左右(x,Tl,Tr) ·中序遍历:左根右(Tl,x,Tr) ·后序遍历:左右根(Tl,Tr,x) 树的表示法 1.父节点数组表示法 (寻找父节点O(1),寻找儿子节点O(n)) 2.儿子链表表示法 (为克服找父节点不方便,可牺牲空间换时间:) 3.左儿子右兄弟表示法…
前面主要介绍了AVL的基本概念与结构,下面开始详细介绍AVL的实现细节: AVL树实现的关键点 AVL树与二叉搜索树结构类似,但又有些细微的区别,从上面AVL树的介绍我们知道它需要维护其左右节点平衡,实现AVL树关键在于标注节点高度.计算平衡因子.维护左右子树平衡这三点,下面分别介绍: 标注节点高度 从上面AVL树的定义中我们知道AVL树其左右节点高度差不能超过一,所以我们需要标注出每个节点高度: 1.节点高度为最大的子节点高度加1,其中叶子节点高度为1: 2.1与4叶子节点高度为1,节点3高度…
目录 一.平衡二叉树定义 二.这货还是不是平衡二叉树? 三.平衡因子 四.如何保持平衡二叉树平衡? 五.平衡二叉树插入节点的四种情况 六.平衡二叉树操作的代码实现 七.AVL树总结 @ 一.平衡二叉树定义 平衡二叉树又称AVL树.它可以是一颗空树,或者具有以下性质的二叉排序树:它的左子树和右子树的高度之差(平衡因子)的绝对值不超过1且它的左子树和右子树都是一颗平衡二叉树. 从上面简单的定义我们可以得出几个重要的信息: 平衡二叉树又称AVL树 平衡二叉树必须是二叉排序树 每个节点的左子树和右子树的…
我们知道,对于一般的二叉搜索树(Binary Search Tree),其期望高度(即为一棵平衡树时)为log2n,其各操作的时间复杂度O(log2n)同时也由此而决定.但是,在某些极端的情况下(如在插入的序列是有序的时),二叉搜索树将退化成近似链或链,此时,其操作的时间复杂度将退化成线性的,即O(n).我们可以通过随机化建立二叉搜索树来尽量的避免这种情况,但是在进行了多次的操作之后,由于在删除时,我们总是选择将待删除节点的后继代替它本身,这样就会造成总是右边的节点数目减少,以至于树向左偏沉.这…
这几种树都属于数据结构中较为复杂的,在平时面试中,经常会问理解用法,但一般不会问具体的实现,所以今天来梳理一下这几种树之间的区别与联系,感谢知乎用户@Cailiang,这篇文章参考了他的专栏. 二叉查找树 是一棵空树,或是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值:它的左.右子树也分别为二叉排序树. 插入数据: 1 如果根节点为空,则将插入的节点作为根节点 2 否则和根节点比较(我们是通过k…
数据结构动图展示网站 树的概念 树(英语:tree)是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合.它是由n(n>=1)个有限节点组成一个具有层次关系的集合.把它叫做"树"是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的.它具有以下的特点: 每个节点有零个或多个子节点: 没有父节点的节点称为根节点: 每一个非根节点有且只有一个父节点: 除了根节点外,每个子节点可以分为多个不相交的子树: 节点的度:一个节点含有的子树的…
先来了解一些基本概念: 1)什么是二叉平衡树? 之前我们了解过二叉查找树,我们说通常来讲, 对于一棵有n个节点的二叉查找树,查询一个节点的时间复杂度为log以2为底的N的对数. 通常来讲是这样的, 但是...有例外 比如,我们向一棵树中输入预先排好序的数据, 如1,2,3,4,5,...10000, 可以想象到,将形成一棵斜树那么查找10000就要经过9999次比较才能得到,这显然不是我们期望看到的 所以,我们希望引入一个约束条件----任何节点的深度不得过深. 这就是二叉平衡树 二叉平衡树是二…
定义 能够在key插入时一直保持平衡的二叉查找树: AVL树 利用AVL树实现ADT Map, 基本上与BST的实现相同,不同之处仅在于二叉树的生成与维护过程 平衡因子 AVL树的实现中, 需要对每个节点跟踪"平衡因子balance factor"参数 \(balance Factor=height (left SubTree)-height(right SubTree)\) 平衡因子大于0,称为"左重left-heavy", 小于零称为"右重right-…
基本概念 AVL树:树中任何节点的两个子树的高度最大差别为1. AVL树的查找.插入和删除在平均和最坏情况下都是O(logn). AVL实现 AVL树的节点包括的几个组成对象: (01) key -- 是关键字,是用来对AVL树的节点进行排序的. (02) left -- 是左孩子. (03) right -- 是右孩子. (04) height -- 是高度.即空的二叉树的高度是0,非空树的高度等于它的最大层次(根的层次为1,根的子节点为第2层,依次类推). AVL旋转算法 AVL失衡四种形态…
实验7 学号:      姓名:     专业: 7.1实验目的 (1) 掌握顺序表的查找方法,尤其是二分查找方法. (2) 掌握二叉排序树的建立及查找. 查找是软件设计中的最常用的运算,查找所涉及到的表结构的不同决定了查找的方法及其性能.二分查找是顺序表的查找中的最重要的方法,应能充分理解其实现方法和有关性能,并能借助其判定树结构来加深理解.二叉排序树结构在实验时具有一定的难度,可结合二叉树的有关内容和方法来实现. 7.2 实验任务 编写算法实现下列问题的求解. (1) 对下列数据表,分别采用…
      1.. 平衡二叉树 平衡二叉树要求,对于任意一个节点,左子树和右子树的高度差不能超过1. 平衡二叉树的高度和节点数量之间的关系也是O(logn) 为二叉树标注节点高度并计算平衡因子 AVL树是一棵平衡二叉树 2.. 实现AVL树的业务逻辑 import java.util.ArrayList; public class AVLTree<K extends Comparable<K>, V> { private class Node { public K key; pub…
今天的博客是在上一篇博客的基础上进行的延伸.上一篇博客我们主要聊了二叉排序树,详情请戳<二叉排序树的查找.插入与删除>.本篇博客我们就在二叉排序树的基础上来聊聊平衡二叉树,也叫AVL树,AVL是发明平衡二叉树的两个科学家的名字的缩写,在此就不做深究了.其实平衡二叉树就是二叉排序树的一种,比二叉排序树多了一个平衡的条件.在一个平衡二叉树中,一个结点的左右子树的深度差不超过1. 本篇博客我们就依照平衡二叉树的特点,在创建二叉排序树的同时要保证结点的左右子树的深度差不超过1的规则.当我们往二叉排序树…
  1.概念: AVL树本质上还是一个二叉搜索树,不过比二叉搜索树多了一个平衡条件:每个节点的左右子树的高度差不大于1. 二叉树的应用是为了弥补链表的查询效率问题,但是极端情况下,二叉搜索树会无限接近于链表,这种时候就无法体现二叉搜索树在查询时的高效率,而最初出现的解决方式就是AVL树.如下图: 2.旋转 说到AVL树就不得不提到树的旋转,旋转是AVL维持平衡的方式,主要有以下四种类型. 2.1.左左旋转 如图2-1所示,此时A节点的左树与右树的高度差为2,不符合AVL的定义,此时以B节点为轴心…
(百度百科)在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下都是O(log n).增加和删除可能需要通过一次或多次树旋转来重新平衡这个树.AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 "An algorithm for the organization of information" 中发表了它.…
0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 数据结构图文解析之:树的简介及二叉排序树C++模板实现. 数据结构图文解析之:AVL树详解及C++模板实现 数据结构图文解析之:二叉堆详解及C++模板实现 数据结构图文解析之:哈夫曼树与哈夫曼编码详解及C++模板实现 AVL树简介 AVL树的名字来源于它的发明作者G.M. Adelson-Velsk…
二叉查找树:由于二叉查找树建树的过程即为插入的过程,所以其中序遍历一定为升序排列! 插入:直接插入,插入后一定为根节点 查找:直接查找 删除:叶子节点直接删除,有一个孩子的节点删除后将孩子节点接入到父节点即可,有两个孩子的节点,将左儿子最右边节点(或右儿子最左边节点)替换到根节点即可. AVL树(二叉平衡查找树) 定义:节点的平衡度(左子树的高度 - 右子树的高度)只能为-1.0.1的二叉查找树. 创建:需要一个变量记录每个节点的平衡度 查找:直接查找 插入:LL.LR.RL.RR过程 删除:分…