AlphaGo: Mastering the ancient game of Go with Machine Learning Posted by David Silver and Demis Hassabis, Google DeepMind Games are a great testing ground for developing smarter, more flexible algorithms that have the ability to tackle problems in w…
数据挖掘:实用机器学习技术P295页: 在weka软件中的实验者界面中,新建好实验项目后,添加相应的实验数据,然后添加对应需要的分类算法 ,需要使用多个算法时候重复操作添加add algorithm.再选择run标签卡中,选择start按钮,最后选择analysis选项卡,然后再在右上角点选experiment按钮,再点选perform test按钮,随后,之前添加的第一个算法就会和第二个与第三个算法的比较结果有关性能的统计显著性测试的结果就显示在右侧的空白面板中了. 我们比较的是百分比准确率统…
//李雨泽源代码,不可随意修改.//时间:2017年9月22号.//地点:北京周末约科技有限公司.//package com.bao; /*围棋*/ /*import java.awt.*; import java.awt.event.*; @SuppressWarnings("serial") class ChessPad extends Panel implements MouseListener,ActionListener { int x=-1,y=-1,棋子颜色=-1; Bu…
谷歌发布"自动机器学习"技术 AI可自我创造 据Inverse报道,今年5月份,谷歌宣布其人工智能(AI)研究取得重大进展,似乎帮助科幻小说中最耸人听闻的末日预言成为现实.谷歌推出名为“自动机器学习(AutoML)”的技术,在无需人类工程师的支持下,允许AI进行自我创造. 从表面上看,这种技术可能会让人觉得AI发展终于迎来“奇点时刻”,它正在失去控制.但实际上,谷歌正利用它将机器学习令人不可思议的力量交到普通人手中.从本质上讲,AutoML的策略就是利用神经网络设计其他神经网络,这并不…
详细教程: 使用Java的GUI技术实现 " 贪吃蛇 " 游戏_IT打工酱的博客-CSDN博客…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答不出来,我在知乎和博客上查了查这个问题,发现还没有人写过比较详细和有说服力的对比和解释.那我根据以前读的书和论文,还有和与导师之间的交流,尝试着说一说这几者的区别吧,毕竟一个好的定义在未来的学习和交流中能够发挥很大的作用.同时补上数据科学和商业分析之间的关系.能力有限,如有疏漏,请包涵和指正. 导论…
前言 Alpha Go在16年以4:1的战绩打败了李世石,17年又以3:0的战绩战胜了中国围棋天才柯洁,这真是科技界振奋人心的进步.伴随着媒体的大量宣传,此事变成了妇孺皆知的大事件.大家又开始激烈的讨论机器人什么时候会取代人类统治世界的问题. 其实人工智能在上世纪5.60年代就开始进入了理论研究阶段,人们在不断探索人工智能技术的同时,也担忧起机器人会不会替代人类.然而现实比理想残酷的多,由于当时各种条件的限制(理论基础.技术基础.数据基础.硬件性能等),人工智能相关的项目进度缓慢,也缺少实际成效…
机器学习 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0 机器学习是人工智能的一个分支.人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然.清晰的脉络.显然,机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题.机器学习在近30多年已发展为一门多领域交叉学科,涉及概率论.统计学.逼近论.凸分析.计算复杂性理论等多门学科.…
转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智…
转载:http://www.jianshu.com/p/b73b6953e849 该资源的github地址:Qix <Statistical foundations of machine learning> 介绍:<机器学习的统计基础>在线版,该手册希望在理论与实践之间找到平衡点,各主要内容都伴有实际例子及数据,书中的例子程序都是用R语言编写的. <A Deep Learning Tutorial: From Perceptrons to Deep Networks>…
机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008/Qix/blob/master/dl.md 原作作者會不斷更新.本文更新至2014-12-21 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍非常全面.从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep L…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚…
声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 写在前面 记得在<Pattern Recognition And Machine Learning>一书中的开头有讲到:“概率论.决策论.信息论3个重要工具贯穿着<PRML>整本书,虽然看起来令人生畏…”.确实如此,其实这3大理论在机器学习的每一种技法中,或多或少都会出现其身影(不局限在概率模型). <PRML>书中原话:”This chapter also…
本文汇编了一些机器学习领域的框架.库以及软件(按编程语言排序). 1. C++ 1.1 计算机视觉 CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库 OpenCV—它提供C++, C, Python, Java 以及 MATLAB接口,并支持Windows, Linux, Android and Mac OS操作系统. 1.2 机器学习 MLPack DLib ecogg shark 2. Closure Closure Toolbox—Clojure语言库与工具的分类目录 3…
10.1  决定下一步做什么 10.2  评估一个假设 10.3  模型选择和交叉验证集 10.4  诊断偏差和方差 10.5  归一化和偏差/方差 10.6  学习曲线 10.7  决定下一步做什么 10.1  决定下一步做什么 到目前为止,我们已经介绍了许多不同的学习算法,如果你一直跟着这些视频的进度学习,你会发现自己已经不知不觉地成为一个了解许多先进机器学习技术的专家了. 然而,在懂机器学习的人当中依然存在着很大的差距,一部分人确实掌握了怎样高效有力地运用这些学习算法.而另一些人他们可能对…
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.com/ty4z2008/Qix/blob/master/dl.md)共500条,[篇目二](https://github.com/ty4z2008/Qix/blob/master/dl2.md)开始更新------#####希望转载的朋友**一定要保留原文链接**,因为这个项目还在继续也在不定期更新.希望看到…
机器学习系统设计(Building Machine Learning Systems with Python)- Willi Richert Luis Pedro Coelho 总述 本书是 2014 的,看完以后才发现有第二版的更新,2016.建议阅读最新版,有能力的建议阅读英文版,中文翻译有些地方比较别扭(但英文版的书确实是有些贵). 我读书的目的:泛读主要是想窥视他人思考的方式. 作者写书的目标:面向初学者,但有时间看看也不错.作者说"我希望它能激发你的好奇心,并足以让你保持渴望,不断探索…
Python机器学习介绍(Python Machine Learning 中文版) 机器学习,如今最令人振奋的计算机领域之一.看看那些大公司,Google.Facebook.Apple.Amazon早已展开了一场关于机器学习的军备竞赛.从手机上的语音助手.垃圾邮件过滤到逛淘宝时的物品推荐,无一不用到机器学习技术. 如果你对机器学习感兴趣,甚至是想从事相关职业,那么这本书非常适合作为你的第一本机器学习资料.市面上大部分的机器学习书籍要么是告诉你如何推导模型公式要么就是如何代码实现模型算法,这对于零…
Python机器学习 机器学习,如今最令人振奋的计算机领域之一.看看那些大公司,Google.Facebook.Apple.Amazon早已展开了一场关于机器学习的军备竞赛.从手机上的语音助手.垃圾邮件过滤到逛淘宝时的物品推荐,无一不用到机器学习技术. 如果你对机器学习感兴趣,甚至是想从事相关职业,那么这本书非常适合作为你的第一本机器学习资料.市面上大部分的机器学习书籍要么是告诉你如何推导模型公式要么就是如何代码实现模型算法,这对于零基础的新手来说,阅读起来相当困难.而这本书,在介绍必要的基础概…
本章通过一个例子,介绍机器学习的整个流程. 2.1 使用真实数据集练手(Working with Real Data) 国外一些获取数据的网站: Popular open data repositories: UC Irvine Machine Learning Repository Kaggle datasets Amazon's AWS datasets Meta portals (they list open data repositories): http://dataportals.o…
在过去的几个月中,我一直在收集自然语言处理(NLP)以及如何将NLP和深度学习(Deep Learning)应用到聊天机器人(Chatbots)方面的最好的资料. 时不时地我会发现一个出色的资源,因此我很快就开始把这些资源编制成列表. 不久,我就发现自己开始与bot开发人员和bot社区的其他人共享这份清单以及一些非常有用的文章了. 在这个过程中,我的名单变成了一个指南,经过一些好友的敦促和鼓励,我决定和大家分享这个指南,或许是一个精简的版本 - 由于长度的原因. 这个指南主要基于Denny Br…
10.1  决定下一步做什么 10.2  评估一个假设 10.3  模型选择和交叉验证集 10.4  诊断偏差和方差 10.5  归一化和偏差/方差 10.6  学习曲线 10.7  决定下一步做什么 10.1  决定下一步做什么 到目前为止,我们已经介绍了许多不同的学习算法,如果你一直跟着这些视频的进度学习,你会发现自己已经不知不觉地成为一个了解许多先进机器学习技术的专家了. 然而,在懂机器学习的人当中依然存在着很大的差距,一部分人确实掌握了怎样高效有力地运用这些学习算法.而另一些人他们可能对…
今天看到一篇文章  Google’s Image Classification Model is now Free to Learn  说是狗狗的机器学习速成课程(Machine Learning Crash Course)现在可以免费学习啦,因为一开始年初的时候是内部使用的,后来开放给大众了.大家有谁对不作恶家的机器学习感兴趣的话,可以点击连接去看看. 但是以上不是我说的重点. 说狗狗的原因,是为了引出我大微软的机器学习. 在2018年3月7日,在Windows开发者日活动中,微软宣布推出Wi…
机器学习实战(Machine Learning in Action)学习笔记————08.使用FPgrowth算法来高效发现频繁项集 关键字:FPgrowth.频繁项集.条件FP树.非监督学习作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.c…
机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN) 关键字:邻近算法(kNN: k Nearest Neighbors).python.源码解析.测试作者:米仓山下时间:2018-10-21机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiong…
在<机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)>一文中,我们讨论了如何用逻辑回归解决二分类问题以及逻辑回归算法的本质.现在来看一下多分类的情况. 现实中相对于二分类问题,我们更常遇到的是多分类问题.多分类问题如何求解呢?有两种方式.一种是方式是修改原有模型,另一种方式是将多分类问题拆分成一个个二分类问题解决. 先来看一下第一种方式:修改原有模型.即:把二分类逻辑回归模型变为多分类逻辑回归模型. (二分类逻辑回归称为binary…
终身机器学习(Lifelong Machine Learning)综述 2015年10月23日 17:34:57 qrlhl 阅读数 7805更多 分类专栏: 机器学习   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/qrlhl/article/details/49364173 大概有十几天了没有回来更新博客了吧,这期间遇到了大大小小各种事情,最悲伤的事应该是跟我关系最好的一个哥们的父…