传送门 Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7327   Accepted: 2416 Description Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms.…
Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6383   Accepted: 2043 Description Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms. Now…
Longge's problem   Description Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms. Now a problem comes: Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i,…
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][Status][Discuss] Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一个整数,为N. Output 一个整数,为所求的答案. Sample Inp…
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][Status][Discuss] Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一个整数,为N. Output 一个整数,为所求的答案. Sample Inp…
题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 输入 一个整数,为N. 输出 一个整数,为所求的答案. 样例输入 6 样例输出 15 题解 欧拉函数 易得知满足gcd(n,x)==i的小于等于n的x的个数为phi(n/i), 并且欧拉函数可以在O(√n)的时间内快速求出.. 于是可以先求出所有n的因子,再用欧拉函数得出答案. 由于因子是成对出现的,所以因子并不需要枚举到n,只需枚举到…
题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理论上来说复杂度是\(O(n)\)的,但是\(d\)的值十分有限.在\(2^{32}\)内最多的约数也只有1920个. /* */ #include<bits/stdc++.h> #define LL long long #define int long long const int MAXN =…
求 \(\sum\limits_{i=1}^{n}gcd(i,n)\) Solution 化简为 \(\sum\limits_{i|n}^{n}φ(\dfrac{n}{i})i\) 筛出欧拉函数暴力求答案即可 #include <bits/stdc++.h> using namespace std; #define int long long int phi(int n) { int m = floor(sqrt(n + 0.5)), ans = n; for (int i = 2; i &l…
题意: 给你一个欧拉函数值 phi(n),问最小的n是多少. phi(n) <= 100000000 , n <= 200000000 解题思路: 对于欧拉函数值可以写成 这里的k有可能是等于0的,所以不能直接将phi(n)分解质因子.但是可以知道(Pr - 1)是一定存在的,那就直接枚举素数,满足phi(n) % (Pr-1)的都加进去,然后对这些素数进行爆搜...说到底还是暴力啊...想不到什么巧妙的办法了,最后需要注意的是,一遍枚举完各个素数后phi(n)除后还剩now,现在要判断(no…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2705 题意: 求 sigma(gcd(i,n), 1<=i<=n<2^32) 只有一组数据,很好搞,答案就是sigma(phi(n/d)),直接搜就行了. //STATUS:C++_AC_8MS_11284KB #include <functional> #include <algorithm> #include <iostream> //#i…