题目传送门 题意:求C (n,0),C (n,1),C (n,2)...C (n,n)中奇数的个数 分析:Lucas 定理:A.B是非负整数,p是质数.AB写成p进制:A=a[n]a[n-1]...a[0],B=b[n]b[n-1]...b[0].则组合数C(A,B)与C(a[n],b[n])*C(a[n-1],b[n-1])*...*C(a[0],b[0])  mod p同.即:Lucas (n,m,p)=C (n%p,m%p) * Lucas (n/p,m/p,p)  我是打表找规律的,就是…
喵喵的神∙数 Time Limit: 1 Sec Memory Limit: 128 MB Description 喵喵对组合数比較感兴趣,而且对计算组合数很在行. 同一时候为了追求有后宫的素养的生活,喵喵每天都要研究 质数. 我们先来复习一下什么叫做组合数.对于正整数P.T                                                           然后我们再来复习一下什么叫质数.质数就是素数,假设说正整数N的约数仅仅有1和它本身,N就是质数:另外. 1…
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4349 Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1723    Accepted Submission(s): 1144 Problem Description Xiao Ming likes coun…
Xiao Ming's Hope Time Limit:1000MS     Memory Limit:32768KB  Description Xiao Ming likes counting numbers very much, especially he is fond of counting odd numbers. Maybe he thinks it is the best way to show he is alone without a girl friend. The day…
Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1786    Accepted Submission(s): 1182 Problem Description Xiao Ming likes counting numbers very much, especially he is fond of cou…
这种题面真是够了......@小明 题意:the number of odd numbers of C(n,0),C(n,1),C(n,2)...C(n,n). 奇数...就是mod 2=1啊 用Lucas定理,2的幂,就是二进制啊 ${1\choose 1}={1\choose 0}={0\choose 0}=1 \quad {0\choose 1}=0$ 只要二进制有1位n是0而i是1,${n\choose i}$就不是奇数啦 对于n二进制的每一个1,i都有两种选择,答案就是$2^{bitC…
题目链接 给一个n, 求C(n, 0), C(n, 1), ..........C(n, n)里面有多少个是奇数. 我们考虑lucas定理, C(n, m) %2= C(n%2, m%2)*C(n/2, m/2)%2,   C(n/2, m/2) = C(n/2%2, m/2%2)*C(n/2/2, m/2/2), 这样一直递归下去,直到m为0. 我们知道如果一个数是奇数, 那么它的所有因子都是奇数, 对应于上面的式子, n%2是偶数的时候, m%2也必须是偶数才可以, 而n%2是奇数的时候,…
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 178  Solved: 70[Submit][Status][Discuss] Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提升.它有三个参数n,k.它会 向编号为0到k的位置发射威力为C(n…
非常无语的一个题. 反正我后来看题解全然不是一个道上的. 要用什么组合数学的lucas定理. 表示自己就推了前面几个数然后找找规律. C(n, m) 就是 组合n取m: (m!(n-m!)/n!) 假设n==11 : C(11,0):C(11,1):C(11,2):C(11,3):C(11,4):C(11,5): 分别为 (1/1); (1 / 11) ; (11*10 / 2*1)  ;   (11*10*9 / 3*2*1); (11*10*9*8 / 4*3*2*1) ;  (11*10*…
Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description Xiao Ming likes counting numbers very much, especially he is fond of counting odd numbers. Maybe he thinks it is the best way to…
题意:给你n,问在C(n,1),C(n,2)...C(n,n)中有多少个奇数. 比赛的时候打表看出规律,这里给一个数学上的说明. Lucas定理:A,B非负整数,p是质数,A,B化为p进制分别为a[n]a[n-1]...a[0],b[n]b[n-1]...b[0]. 那么组合数C(A,B)与C(a[n],b[n])*...*C(a[0],b[0])模p同余. 证明就不说了,我也不会,给个链接  Lucas定理证明 那再来看这道题就简单了,p=2,C(0,1)=0,C(1,0) = C(1,1)…
网上证明很多,虽然没看懂.... 主要解决大组合数取模的情况 费马小定理求大组合数: a^(p-1)=1%p; 两边同除a a^(p-2)=1/a%p; C(n,m)= n!/(m!*(n-m)!) 所以C(n,m)=f(n)*qpow(f(m)*f(n-m),MOD-2))%MOD 预处理组合数f 百度之星2016 1003 先推公式,再lucas p很大的情况 1e9+7 #include<iostream> #include<string> #include<algor…
有这样一个性质:C(n,m)%p=C(p1,q1)*C(p2,q2).......%p,其中pkpk-1...p1,qkqk-1...q1分别是n,m在p进制下的组成. 就完了. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; int main() { while (scanf("%d",&am…
Lucas定理这里有详细的证明. 其实就是针对n, m很大时,要求组合数C(n, m) % p, 一般来说如果p <= 10^5,那么就能很方便的将n,m转化为10^5以下这样就可以按照乘法逆元的方法求解. 定义: C(n, m) = C(n%p, m%p)*C(n/p, m/p) (mod p) 一种比较好理解的证明方式是这样的, 上面资料中有提到, 由p为质数,(1+x)^p = 1+x^p (mod p) p为质数,然后就是下面这幅图的内容了. 将n, m分别表示成p进制,n = n/p*…
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Status][Discuss] Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提升.它有三个参数n,k.它会 向编号为0到k的位置发射威力为C(n,…
4403: 序列统计 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 328  Solved: 162[Submit][Status][Discuss] Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. Input 输入第一行包含一个整数T,表示数据组数.第2到第T+1行每行包含三个整数N.L和R,N.L和R的意义如题所述. Output 输出包含T…
BUPT2017 wintertraining(15) #8H 题意 求组合数C(n,i),i从0到n,里面有几个奇数. 题解 直接打表的话可能就直接发现规律了. 规律是n的二进制里有几个1,答案就是2的几次方. 证明: lucas定理有:C(n,m)%p=C(n/p,m/p)*C(n%p,m%p)%p 然后取p为2. 所以展开后是C(0,0),C(0,1),C(1,0),C(1,1)的乘积.其中只有C(0,1)=0. 那么C(n,i)%2==1的条件就是n对应位为0,则i对应位必须是0,n对应…
/* 古代猪文:Lucas定理+中国剩余定理 999911658=2*3*4679*35617 Lucas定理:(m,n)=(sp,tp)(r,q) %p 中国剩余定理:x=sum{si*Mi*ti}+km 先求出sum{C(d,n)}%p[i]=a[i] */ #include<bits/stdc++.h> using namespace std; #define ll long long #define mod 999911659 #define maxn 100005 ll m[]={,…
Lucas定理:把n写成p进制a[n]a[n-1]a[n-2]...a[0],把m写成p进制b[n]b[n-1]b[n-2]...b[0],则C(n,m)与C(a[n],b[n])*C(a[n-1],b[n-1])*C(a[n-2],b[-2])*....*C(a[0],b[0])模p同余. 即:Lucas(n,m,p)=c(n%p,m%p)*Lucas(n/p,m/p,p) 这题是求C(n,0),C(n,1),C(n,2)...C(n,n).当中有多少个奇数也是就是说 求C(n,m)%2==1…
[bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://www.cnblogs.com/karl07/ */ #include <cstdlib> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using…
题意:问用不超过 m 颗种子放到 n 棵树中,有多少种方法. 析:题意可以转化为 x1 + x2 + .. + xn = m,有多少种解,然后运用组合的知识就能得到答案就是 C(n+m, m). 然后就求这个值,直接求肯定不好求,所以我们可以运用Lucas定理,来分解这个组合数,也就是Lucas(n,m,p)=C(n%p,m%p)* Lucas(n/p,m/p,p). 然后再根据费马小定理就能做了. 代码如下: 第一种: #pragma comment(linker, "/STACK:10240…
Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1668    Accepted Submission(s): 1109 Problem Description Xiao Ming likes counting numbers very much, especially he is fond of cou…
Lucas定理:用于计算组合数模除素数后的值,其实就是把(n,m)分别表示为p进制,累乘各位的可能取的个数,得到最终的结果: 推论:(n & m) == m则C(n,m)为奇数:即C(n,m) %2 = 1,即m二进制的每一位n都必须为1,所以n & m = m; 应用: Xiao Ming's Hope 题意:问C(n,0),C(n,1)...C(n,n)中有多少个为奇数?(1 <= n <= 1e8) ACM_cxlove的证明 思路:用朴素的n & m == m来…
大致意思就是求组合数C(n , m) % p的值, p为一个偶数 可以将组合数的n 和 m都理解为 p 进制的表示 n  = ak*p^k + a(k-1)*p^(k-1) + ... + a1*p + a0 m = bk*p^k + b(k-1)*p^(k-1) + ... + b1*p + b0 然后C(n,m)%p = C(ak , bk) * C(a(k-1) , b(k-1)) * ... * C(a1 , b1) * C(a0 , b0) % p 当然这其中出现 ai < bi的情况…
Lucas定理 在『组合数学基础』中,我们已经提出了\(Lucas\)定理,并给出了\(Lucas\)定理的证明,本文仅将简单回顾,并给出代码. \(Lucas\)定理:当\(p\)为质数时,\(C_n^m\equiv C_{n\ mod\ p}^{m\ mod\ p}*C_{n/p}^{m/p}(mod\ p)\). 在计算模域组合数时,如果模数较小,那么就可以尝试使用\(Lucas\)定理来递归求解,其时间复杂度为\(O(plog_p\min(n,m))\). \(Code:\) inlin…
数论综合题. 题目背景 题目背景与题目无关因此省略.题目链接 题目描述 猪王国的文明源远流长,博大精深. iPig 在大肥猪学校图书馆中查阅资料,得知远古时期猪文文字总个数为 \(N\).当然,一种语言如果字数很多,字典也相应会很大.当时的猪王国国王考虑到如果修一本字典,规模有可能远远超过康熙字典,花费的猪力.物力将难以估量.故考虑再三没有进行这一项劳猪伤财之举.当然,猪王国的文字后来随着历史变迁逐渐进行了简化,去掉了一些不常用的字. iPig 打算研究古时某个朝代的猪文文字.根据相关文献记载,…
模板题 在数论中,Lucas定理用于计算二项式系数\({\tbinom {m}{n}}\)被质数\(p\)除的所得的余数. 描述 设\(p\)为素数,\(a,b\in N_+\),且 \[a=a_kp^k+a_{k-1}p^{k-1}+\cdots+a_1p+a_0\] \[b=b_kp^k+b_{k-1}p^{k-1}+\cdots+b_1p+b_0\] 这里\(0\leq a_i,b_i\leq p-1\bigwedge a_i,b_i\in Z(i=0,1,2,3,\cdots,k)\)…
又双叒叕来水数论了 今天来学习\(Lucas \:\ \& \:\ Catalan Number\) 两者有着密切的联系(当然还有CRT),所以放在一起学习一下 \(Lucas\) 定义\(\&\)性质 \(Lucas\)定理是用来求 $C_n^m mod :\ p \(的值. 其中\)n\(和\)m\(是非负整数,\)p\(是素数. 一般用于\)m,n\(很大而\)p\(很小,抑或是\)n,m\(不大但是大于\)p$的情况下来求结果. 用处\(\&\)背景 目前我们学过几个用来求…
卢卡斯定理是一个与组合数有关的数论定理,在算法竞赛中用于求组合数对某质数的模. 第一部分是博主的个人理解,第二部分为 Pecco 学长的介绍 第一部分 一般情况下,我们计算大组合数取模问题是用递推公式进行计算的: \[C_n^m=(C_{n-1}^m+C_{n-1}^{m-1}) mod\ p \] 其中p相对较小的素数.但是当n和m过大时,计算的耗费就急剧增加\(O(mn)\),在实践中不适用.当这时候就需要Lucas定理进行快速运算: \[C_n^m=\prod_{i=0}^{k}C_{n_…
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; int jc[100003]; int p; int ipow(int x, int b) { ll t = 1, w = x;…