高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵.高斯消元法的原理是:若用初等行变换将增广矩阵 化为 ,则AX = B与CX = D是同解方程组.所以我们可以用初等行变换把增广矩阵转换为行阶梯阵,然后回代求出方程的解. 以上是线性代数课的回顾,下面来说说高斯消元法在编程中的应用. 首先,先介绍程序中高斯消元法的步骤:(我们设方程组中方程的个数为equ,变元的个数为var,注意:一般情况下是n个方程,n个变元,但是有些题目就故意让方程数与变元数…