第九篇:随机森林(Random Forest)】的更多相关文章

 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share Toby,项目合作QQ:231469242 随机森林就是由多个决策树组合而成的投票机制. 理解随机森林,要先了解决策树 随机森林是一个集成机器学习算法…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 前面机器学习方法(四)决策树讲了经典的决策树算法,我们讲到决策树算法很容易过拟合,因为它是通过最佳策略来进行属性分裂的,这样往往容易在train data上效果好,但是在test data上效果不好.随机森林random forest算法,本质上是一种ensemble的方法,可以有效的降低过拟合,本文将具体讲解. Background…
前言 随机森林非常像<机器学习实践>里面提到过的那个AdaBoost算法,但区别在于它没有迭代,还有就是森林里的树长度不限制. 因为它是没有迭代过程的,不像AdaBoost那样需要迭代,不断更新每个样本以及子分类器的权重.因此模型相对简单点,不容易出现过拟合. 下面先来讲讲它的具体框架流程. 框架流程 随机森林可以理解为Cart树森林,它是由多个Cart树分类器构成的集成学习模式.其中每个Cart树可以理解为一个议员,它从样本集里面随机有放回的抽取一部分进行训练,这样,多个树分类器就构成了一个…
随机森林是一个最近比较火的算法 它有很多的优点: 在数据集上表现良好 在当前的很多数据集上,相对其他算法有着很大的优势 它能够处理很高维度(feature很多)的数据,并且不用做特征选择 在训练完后,它能够给出哪些feature比较重要 在创建随机森林的时候,对generlization error使用的是无偏估计 训练速度快 在训练过程中,能够检测到feature间的互相影响 容易做成并行化方法 实现比较简单 随机森林思想 用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵…
引言想通过随机森林来获取数据的主要特征 1.理论根据个体学习器的生成方式,目前的集成学习方法大致可分为两大类,即个体学习器之间存在强依赖关系,必须串行生成的序列化方法,以及个体学习器间不存在强依赖关系,可同时生成的并行化方法: 前者的代表是Boosting,后者的代表是Bagging和“随机森林”(Random Forest) 随机森林在以决策树为基学习器构建Bagging集成的基础上,进一步在决策树的训练过程中引入了随机属性选择(即引入随机特征选择). 简单来说,随机森林就是对决策树的集成,但…
1.什么是随机采样? Bagging可以简单的理解为:放回抽样,多数表决(分类)或简单平均(回归): Bagging的弱学习器之间没有boosting那样的联系,不存在强依赖关系,基学习器之间属于并列生成.它的特点在“随机采样”. 随机采样(bootsrap)就是从我们的训练集里面采集固定个数的样本,但是每采集一个样本后,都将样本放回.也就是说,之前采集到的样本在放回后有可能继续被采集到.对于我们的Bagging算法,一般会随机采集和训练集样本数m一样个数的样本.这样得到的采样集和训练集样本的个…
在得出random forest 模型后,评估参数重要性 importance() 示例如下 特征重要性评价标准 %IncMSE 是 increase in MSE.就是对每一个变量 比如 X1 随机赋值, 如果 X1重要的话, 预测的误差会增大,所以 误差的增加就等同于准确性的减少,所以MeanDecreaseAccuracy 是一个概念的. IncNodePurity 也是一样, 如果是回归的话, node purity 其实就是 RSS(残差平方和residual sum of squar…
决策树介绍:http://www.cnblogs.com/huangshiyu13/p/6126137.html 一些boosting的算法:http://www.cnblogs.com/huangshiyu13/p/6134329.html…
[基础算法] Random Forests 2011 年 8 月 9 日 Random Forest(s),随机森林,又叫Random Trees[2][3],是一种由多棵决策树组合而成的联合预测模型,天然可以作为快速且有效的多类分类模型.如下图所示,RF中的每一棵决策树由众多split和node组成:split通过输入的test取值指引输出的走向(左或右):node为叶节点,决定单棵决策树的最终输出,在分类问题中为类属的概率分布或最大概率类属,在回归问题中为函数取值.整个RT的输出由众多决策树…
前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时, 单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝可以减少这种情况,但是还是不够的. 模型组合(比如说有Boosting,Bagging等)与决策树相关的算法比较多,这些算法最终的结果是生成N(可能会有几百棵以上)棵树,这样可以大 大的减少单决策树带来的毛病,有点类似于三个臭皮匠等于一个诸葛亮的做法,虽然这几…