L2M-GAN: Learning to Manipulate Latent Space Semantics for Facial Attribute Editing 2021 CVPR L2M-GAN: Learning To Manipulate Latent Space Semantics for Facial Attribute Editing (thecvf.com) (个人理解,欢迎指正错误)   Introduction 本文是一篇面部属性编辑的文章,虽然与人脸匿名是两个角度,但是…
同步自我的知乎专栏文章:https://zhuanlan.zhihu.com/p/32135185 从Slerp说起 ICLR'2017的投稿里,有一篇很有意思但被拒掉的投稿<Sampling Generative Networks> by Tom White.文章比较松散地讲了一些在latent space挺有用的采样和可视化技巧,其中一个重要的点是指出在GAN的latent space中,比起常用的线性插值,沿着两个采样点之间的"弧"进行插值是更合理的办法.实现的方法就…
[论文标题]Local Latent Space Models for Top- N Recommendation  (KDD-2018 ) [论文作者]—Evangelia Christakopoulou (University of Minnesota),George Karypis (University of Minnesota) [论文链接]Paper(9-pages // Double column) [摘要] 用户的行为是由他们对购买.查看的有潜在兴趣的商品的各个方面的偏好所驱动的…
论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于知网资源的词嵌入学习模型,在通用的中文词嵌入评测数据集上进行了评测,取得了较好的结果. 作者简介 该论文选自 ACL 2017,是清华大学孙茂松刘知远老师组的成果.论文的两名共同第一作者分别是牛艺霖和谢若冰. 牛艺霖,清华本科生. 谢若冰,清华研究生(2014-2017),清华本科生(2010-20…
目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 3.2 音频 3.3 图像 3.4 多模态 4. Detailed overview 4.1 文本 4.1.1 LIWC/MRC 4.1.2 Receptiviti API 4.1.3 社交网络文本研究 4.1.4 深度神经网络应用 4.1.5 SenticNet 5 4.1.6 weighted…
[论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 现有的异构网络(HIN)嵌入方法本质上可以归结为两个步骤(1)正样本生成和负样本生成(2)在这些样本上训练模型优化目标函数以得到更合适的节点嵌入.目前主流的异构网络嵌入方法存在以下几个问题: Problem 1: 首先,这些算法一般从原始网络中随机选择节点与中心节点组合生成正样本或者负样本,即,…
[论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 (1) 解决问题 现有的基于GAN的方法大多都是先假设服从一个高斯分布,然后再来学习节点嵌入(匹配节点嵌入向量服从这个假设的先验分布). 这可能存在两个问题: 一个问题是(由于真实数据是有很多噪声的,所以会为GAN模型学习的分布带来很多噪声)很难从节点向量表示中区分出噪声节点,因为所有节点都是服从…
Deep Learning of Graph Matching 阅读笔记 CVPR2018的一篇文章,主要提出了一种利用深度神经网络实现端到端图匹配(Graph Matching)的方法. 该篇文章理论性较强,较难读懂... 论文链接 介绍这篇文章之前,需要先了解一下什么是图匹配,图匹配是干嘛的. 图匹配 图匹配简单来说就是将已有的两个图中对应的顶点关联起来实现能量函数最大.以多目标跟踪任务来说,每帧图像中的观测都可以构成一个拓扑图,希望将两帧图像中的拓扑图匹配起来以实现同一条轨迹中的观测成功匹…
原文地址: https://blog.csdn.net/ln1996/article/details/78459060 --------------------- 作者:lnn_csdn 来源:CSDN -------------------------------------------------------------------------------- 花了一周多的时间读了一篇论文<Human-level concept learning through probabilistic p…
[论文阅读笔记] metapath2vec: Scalable Representation Learning for Heterogeneous Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 解决异构网络上的节点嵌入问题. 论文中指出了异构网络嵌入的两个关键问题: 在异构网络中,如何定义和建模节点邻域的概念? 如何优化嵌入模型,使得其能够有效的保留多种类型的节点和边的结构和语义信息. (2) 主要贡献 Contribution 1: 定义了异构网络表示学…
[论文阅读笔记] node2vec:Scalable Feature Learning for Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 由于DeepWalk的随机游走是完全无指导的随机采样,即随机游走不可控.本文从该问题出发,设计了一种有偏向的随机游走策略,使得随机游走可以在DFS和BFS两种极端搜索方式中取得平衡. (2) 主要贡献 Contribution: 本篇论文主要的创新点在于改进了随机游走的策略,定义了两个参数p和q,使得随机游走在BFS…
一.摘要 指出深度学习在机器学习场景下的优势,以及深度学习快速崛起的原因.随后点出研究者对于深度学习隐私问题的考虑.作者提出了一种强力的攻击方法,在其攻击下任何分布式.联邦式.或者中心化的深度学习方法都是脆弱的.这种攻击方法利用了学习过程中攻击者可以训练一个GAN的特性,从而能够模拟原始训练集的分布. 二.问题抽象 在众包/联邦机器学习场景下,任何一个参与多方训练的攻击者都能够获取多方训练集的隐私信息(推理攻击). 三.使用工具 GAN 四.文章贡献 提出了一种新的利用GAN对分布式深度学习的攻…
注意:论文中,很多的地方出现baseline,可以理解为参照物的意思,但是在论文中,我们还是直接将它称之为基线,也 就是对照物,参照物. 这片论文中,作者没有去做实际的实验,但是却做了一件很有意义的事,他收罗了近些年所有推荐系统中涉及到深度学习的文章 ,并将这些文章进行分类,逐一分析,然后最后给出了一个推荐系统以后的发展方向的预估. 那么通过这篇论文,我们可以较为 系统的掌握这些年,在推荐系统方面,深度学习都有那些好玩的应用,有哪些新奇的方法,下面是论文的一个粗糙翻译: 概述:   随着互联网上…
该笔记基于:Multimodal Machine Learning:A Survey and Taxonomy 该论文是一篇对多模态机器学习领域的总结和分类,且发表于2017年,算是相当新的综述了.老师在课上推荐阅读,我花了三天大体看了一边,其中有很多实际的方法或者技术对我来说是全新的领域,也是未来学习的方向,但是对这个领域和其想解决的问题有了大致的了解.记录如下: 关键名词解释: Modality:A particular mode in which something exists or i…
这是一篇图像增强的论文,作者创建了一个数据集合,和以往的问题不同,作者的创建的see in the dark(SID)数据集合是在极其暗的光照下拍摄的,这个点可以作为一个很大的contribution 实际上我认为作者实际上是做了三个工作,以及图像去马赛克(demosaic),图像增强(enhancement)和图像去噪(denoise) denoise 作者在introduction中回顾了以前的工作,包括图像去噪,图像去马赛克的工作,以及图像增强,在图像去噪方面,作者有提及之前的深度学习相关…
Multi-task Learning for Stock Selection  Joumana Ghosn and Yoshua Bengio 摘要 用人工神经网络预测未来回报以便于做出对应的金融决策时,我们需要考虑是为每支stock训练一个独立的网络结构还是所有的stocks能够共享一个网络结构.本文采用了一种折中的方案:将每支股票的未来回报作为一个task,那么不同股票间的模型会共享一些参数,这是一种多任务学习的形式.这种方法的年收益比多种benchmarks高14%. 前言 以往的对于金…
今日看了一篇文章<Learning to Select Knowledge for Response Generation in Dialog Systems>,以知识信息.对话目标.对话历史信息为基础,进行端到端的对话语句生成.期间做了一些笔记,还有个人想法.大家一起进步!…
真不能再挖坑了,前面挖聊很多坑都没来得及填,从今往后,能写多少就是多少.Sequential projection learning for hashing这篇文章去年就阅读了,当时阅读完没来得及做笔记,这一段时间又重新拿来品读了一年天,并对其中的公式进行了推导,这篇文章作者主页上有slide,讲得挺好的.下面是自己的一些推导,由于公式编辑起来不急手写得快,所以就用笔记代替了. 这里标号为1推导的是paper目标函数项中的第一项,目标函数第二项是通过最大化信息熵而来的,关于到最后为神马转化为了求…
中文译文:深度学习.自然语言处理和表征方法 http://blog.jobbole.com/77709/ 英文原文:Deep Learning, NLP, and Representations http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/ 总结: 这篇文章中主要提到了单层神经网络,单词嵌入(word embeddings),表征这几个概念,结合具体的实例,写的是通俗易懂,在引用参考文献的位置都给出了对应的链接,一些…
这是Machine Learning领域的经典论文,文中提到了ML相关的12个keys,并自称这些keys是“black art”,我觉得有点像ML的“最佳实践”. 网上有此文的中文翻译,写得很详细,附上两个,并感谢这两位同学的工作: https://blog.csdn.net/u011467621/article/details/48243135 https://blog.csdn.net/danameng/article/details/21563093 想看完整翻译的同学可以参考上面两篇文…
https://www.wxnmh.com/thread-1528249.htm https://www.wxnmh.com/thread-1528251.htm https://www.wxnmh.com/thread-1528254.htm Word embeddings using pre-trained embeddings (Kim, 2014) [12] 使用预训练embedding The optimal dimensionality of word embeddings is m…
阅读文献:Distance Dependent Infinite Latent Feature Model 作者:Samuel J.Gershman ,Peter I.Frazier ,and David M.Blei   摘要: 潜在特征模型在对数据进行小模块分解的过程中被广泛使用.这些模型的贝叶斯非参数变量在潜在特征上使用了IBP先验,进而使得特征的数量由数据决定.我们提出了一种一般化的IBP--距离依赖IBP,用来建模不可交换数据.这种模型依赖于数据点之间定义的距离,倾向于使相邻近的数据共…
Introduction (1)问题描述: super resolution(SP)问题:Gallery是 high resolution(HR),Probe是 low resolution(LR). (2)当前存在的问题: ① 当前的半耦合(semi-coupled)矩阵学习是解决SR复原,而不是直接进行行人重识别: ② 行人图片存在噪声,直接使用半耦合矩阵学习无法很好的刻画特征空间. (3)Contribution: ① 提出一个新的半耦合低秩判别矩阵学习方法(semi-coupled lo…
Introduction (1)Motivation: ① 现实场景中,给所有视频进行标记是一项繁琐和高成本的工作,而且随着监控相机的记录,视频信息会快速增多,因此需要采用半监督学习的方式,只对一部分的视频进行标记. ② 不同的相机有着不同的拍摄条件(如设备质量.图片尺寸等等),不同设备间的差异影响匹配的性能. (2)Contribution: ① 提出一个半监督视频行人重识别方法(semi-supervised video-based person re-id approach). ② 设计了…
由于在读文献期间多次遇见KISSME,都引自这篇CVPR,所以详细学习一下. Introduction 度量学习在机器学习领域有很大作用,其中一类是马氏度量学习(Mahalanobis metric learning). 什么是马氏距离?参考该篇文章[传送门] KISS含义为:keep it simple and straightforward Learning a Mahalanobis Metric 对于两个数据点 xi.xj,基于马氏距离的相似度为: 如果两个数据属于同一类,记为 yij…
摘要 (1)方法: 面对不同行人视频之间和同一个行人视频内部的变化,提出视频间和视频内距离同时学习方法(SI2DL). (2)模型: 视频内(intra-vedio)距离矩阵:使得同一个视频更紧凑: 视频间(inter-vedio)距离矩阵:使得两个匹配视频比不匹配视频距离更小. 设计了视频三元组(vedio triplet),提高学习矩阵的辨别力. (3)数据集: iLIDS-VID and PRID 2011 image sequence datasets 介绍 (1)当今大部分方法主要是基…
文章目录 源代码github地址 摘要 2CLSTM 过程 1. 词嵌入 2. 2LSTM处理 3. CNN学习LSGCNN学习LSG 4. Softmax分类 源代码github地址 https://github.com/sunxiangguo/2CLSTM 但是没有开放数据集, 所以需要自己填数据集 摘要 这篇文章说他们认为文本的结构也是一个包含人物性格的重要特征,所以他们使用了一个名叫2CLSTM的模型,由一个双向的LSTM(Long Short Term Memory networks)…
题目翻译:学习 local feature descriptors 使用 triplets 还有浅的卷积神经网络.读罢此文,只觉收获满满,同时另外印象最深的也是一个浅(文章中会提及)字. 1 Contribution 这篇论文主要做的贡献有: 提出了一种复杂度更小的triplets,更浅,计算度复杂小,表现也很好. 并且借助一种 in-triplet mining的训练方法,降低了挖掘hard negatives的复杂度提高了表现. 论文还介绍了两种不同的loss function在不同的任务下…
原文链接:https://www.52ml.net/20287.html 这篇博文主要讲了深度学习在目标检测中的发展. 博文首先介绍了传统的目标检测算法过程: 传统的目标检测一般使用滑动窗口的框架,主要包括三个步骤: 利用不同尺寸的滑动窗口框住图中的某一部分作为候选区域: 提取候选区域相关的视觉特征.比如人脸检测常用的Harr特征:行人检测和普通目标检测常用的HOG特征等: 利用分类器进行识别,比如常用的SVM模型. 基于深度学习的目标检测分为两派: 基于区域提名的,如R-CNN.SPP-net…
论文原址:https://arxiv.org/pdf/1904.02701.pdf github:https://github.com/OceanPang/Libra_R-CNN 摘要 相比模型的结构,关注度较少的训练过程对于检测器的成功检测也是十分重要的.本文发现,检测性能主要受限于训练时,sample level,feature level,objective level的不平衡问题.为此,提出了Libra R-CNN,用于对目标检测中平衡学习的简单有效的框架.主要包含三个创新点:(1)Io…