本文均属自己阅读源代码的点滴总结.转账请注明出处谢谢. 欢迎和大家交流.qq:1037701636 email:gzzaigcn2009@163.com 写在前面的闲话: 自我感觉自己应该不是一个非常擅长学习算法的人.过去的一个月时间里由于须要去接触了BP神经网络.在此之前一直都觉得算法界的神经网络.蚁群算法.鲁棒控制什么的都是特别高大上的东西,自己也就听听好了,未曾去触碰与了解过.这次和BP神经网络的邂逅.让我初步掌握到.理解透彻算法的基本原理与公式,转为计算机所能识别的代码流,这应该就是所谓…
基于BP神经网络的字符识别研究 原文作者:Andrew Kirillov. http://www.codeproject.com/KB/cs/neural_network_ocr.aspx 摘要:本文通过对人工智能课程中BP神经网络的学习,基于一个神经网络的开源项目,开发实现了一个简易的字符识别系统,并给出了较为理想的实验效果.该系统可以在手写体,印刷体字符识别上有广泛的应用. 关键词:BP神经网络; 字符识别:开源:AForge.NET 0 引言 在处理光学字符识别(OCR)问题上有很多种方法…
语言:c++ 环境:windows 训练内容:根据从steam中爬取的数据经过文本分析制作的向量以及标签 使用相关:无 解释: 就是一个BP神经网络,借鉴参考了一些博客的解释和代码,具体哪些忘了,给出其中一个: http://blog.csdn.net/zhongkejingwang/article/details/44514073 代码: #include <iostream> #include <cstring> #include <cmath> #include…
1.简介(只是简单介绍下理论内容帮助理解下面的代码,如果自己写代码实现此理论不够) 1) BP神经网络是一种多层网络算法,其核心是反向传播误差,即: 使用梯度下降法(或其他算法),通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小. BP神经网络模型拓扑结构包括输入层(input).隐藏层(hidden layer)和输出层(output layer),每层包含多个神经元. 2)BP神经网络示例图 上图就是一个简单的三层BP神经网络.网络共有6个单元,O0用于表示阈值,O1.O2为输…
效果展示 这不是OCR,有些人可能会觉得这东西会和OCR一样,直接进行整个字的识别就行,然而并不是. OCR是2维像素矩阵的像素数据.而手写识别不一样,手写可以把用户写字的笔画时间顺序,抽象成一个维度.这样识别的就是3维的数据了.识别起来简单很多. 最近需要做一个中文手写识别算法.搜索了网上的一些前人作品,发现都是只讲了理论,不讲实际开发.于是打算自己开发一个,并记录开发过程. 由于代码量比较多,这里不会全部贴上来讲解,代码已经放到了gitee,部分地方需对照代码进行观看,下面有URL. 思路…
import numpy import math import scipy.special#特殊函数模块 import matplotlib.pyplot as plt #创建神经网络类,以便于实例化成不同的实例 class BP_mnist: def __init__(self,input_nodes,hidden_nodes,output_nodes,learning_rate): #初始化输入层.隐藏层.输出层的节点个数.学习率 self.inodes = input_nodes self…
使用python语言 学习k近邻分类器的api 欢迎来到我的git查看源代码: https://github.com/linyi0604/MachineLearning from sklearn.datasets import load_iris from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.neighbors…
一.BP神经网络的概念     BP神经网络是一种多层的前馈神经网络,其基本的特点是:信号是前向传播的,而误差是反向传播的.详细来说.对于例如以下的仅仅含一个隐层的神经网络模型: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZ29vZ2xlMTk4OTAxMDI=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="" /…
工作中需要预测一个过程的时间,就想到了使用BP神经网络来进行预测. 简介 BP神经网络(Back Propagation Neural Network)是一种基于BP算法的人工神经网络,其使用BP算法进行权值与阈值的调整[78].在20世纪80年代,几位不同的学者分别开发出了用于训练多层感知机的反向传播算法,David Rumelhart和James McClelland提出的反向传播算法是最具影响力的.其包含BP的两大主要过程,即工作信号的正向传播与误差信号的反向传播,分别负责了神经网络中输出…
一 题目: 71 BP神经网络的实现: 利用C++语言实现BP神经网络, 并利用BP神经网络解决螨虫分类问题: 蠓虫分类问题:对两种蠓虫(A与B)进行鉴别,依据的资料是触角和翅膀的长度,已知了9支Af和6支Apf 的数据如下:A: (1.24,1.27), (1.36,1.74),(1.38,1.64) , (1.38,1.82) , (1.38,1.90) , (1.40,1.70) , (1.48,1.82) , (1.54,1.82) ,(1.56,2.08).B: (1.14,1.82)…