半监督生成对抗网络 一.SGAN简介 半监督学习(semi-supervised learning)是GAN在实际应用中最有前途的领域之一,与监督学习(数据集中的每个样本有一个标签)和无监督学习(不使用任何标签)不同,半监督学习只为训练数据集的一小部分提供类别标签.通过内化数据中的隐藏结构,半监督学习努力从标注数据点的小子集中归纳,以有效地对从未见过的新样本进行分类,要使半监督学习有效,标签数据和无标签数据必须来自相同的基本分布. 缺少标签数据集是机器学习研究和实际应用中的主要瓶颈之一,尽管无标…
深度卷积生成对抗网络(DCGAN) 我们在第3章实现了一个GAN,其生成器和判别器是具有单个隐藏层的简单前馈神经网络.尽管很简单,但GAN的生成器充分训练后得到的手写数字图像的真实性有些还是很具说服力的.即使是那些无法被识别为人类手写数字的字符,也具有许多手写符号的特征,例如可辨认的线条边缘和形状,特别是与用作生成器原始输入的随机噪声相比,更是如此. 想象一下,如果使用更强大的网络架构可以实现什么?本章中的生成器和判别器都将使用卷积神经网络(CNN,或 ConvNet),而不再是简单的双层前馈网…
渐进式增长生成对抗网络(PGGAN) 使用 TensorFlow和 TensorFlow Hub( TFHUB)构建渐进式增长生成对抗网络( Progressive GAN, PGGAN或 PROGAN)--一种能够生成全高清的具有照片级真实感图像的前沿技术.这项技术在顶级机器学习会议ICLR2018上提出时引起了轰动,以至于谷歌立即将其整合为 TensorFlow Hub中的几个模型之一.这项技术被深度学习的鼻祖之一 Yoshua Bengio称赞为"好得令人难以置信",在其发布后,…
训练与普遍挑战:为成功而GAN 一.评估 回顾一下第1章中伪造达・芬奇画作的类比.假设一个伪造者(生成器)正在试图模仿达・芬奇,想使这幅伪造的画被展览接收.伪造者要与艺术评论家(判别器)竞争,后者试图只接收真正的作品进入展览.如果你是那位伪造者,目的是伪造这位伟大艺术家的"遗失的作品",以对达・芬奇风格的完美模仿欺骗艺术评论家,要如何评价自己的做得有多好呢? GAN试图解决伪造者与艺术评论家之间水无止境的竞争问题.考虑到生成器通常比判别器更受关注,考虑它的评估时应该格外仔细.但是要如何…
第一个GAN模型-生成手写数字 一.GAN的基础:对抗训练 形式上,生成器和判别器由可微函数表示如神经网络,他们都有自己的代价函数.这两个网络是利用判别器的损失记性反向传播训练.判别器努力使真实样本输入和伪样本输入带来的损失最小化,而生成器努力使它生成的为样本造成的判别器损失最大化. 训练数据集决定了生成器要学习模拟的样本类型,例如,目标是生成猫的逼真图像,我们就会给GAN提供一组猫的图像. 用更专业的术语来说,生成器的目标是生成符合训练数据集数据分布的样本.对计算机来说,图像只是矩阵:灰度图是…
这是CVPR2019上UCLA和google brain的一个工作.模型非常简单,利用辅助损失解决GAN不稳定问题:用旋转分类将辅助分类器对label的需求去掉,使图片可以直接对自己标注类别. Self-Supervised GANs via Auxiliary Rotation Loss 论文地址:https://arxiv.org/abs/1811.11212 GITHUB代码:https://github.com/vandit15/Self-Supervised-Gans-Pytorch…
Unsupervised Generative Attentionnal Networks with Adapter Layer-In(U-GAN-IT) 从字面我们可以理解为无监督生成对抗网络和适配层的结合 论文实现: 论文实现了无监督图像的翻译问题,当两个图像之间两个图像.纹理差别较大时的图像风格(style)转换. 论文实现了相同的网络结构和超参数同时需要同时保持shape的图像翻译I(类似风格迁移但是图像本身形状这些原始shape不变),以及需要改变shape的图像翻译任务(个人观点,跨…
自编码器生成模型入门 之所以讲解本章内容,原因有三. 生成模型对大多数人来说是一个全新的领域.大多数人一开始接触到的往往都是机器学习中的分类任务--也许因为它们更为直观:而生成模型试图生成看起来很逼真的样本,所以人们对它了解甚少.考虑到自编码器(最近GAN的前身)丰富的资源和研究,所以选择在一个更简单的环境介绍生成模型. 生成模型非常具有挑战性.由于生成模型代表性不足,大多数人不知道典型的生成结构是什么样子的,也不知道面临何种挑战.尽管自编码器在许多方面与最常用的模型相近(例如,有一个明确的目标…
Android群英传笔记--第七章:Android动画机制和使用技巧 想来,最 近忙的不可开交,都把看书给冷落了,还有好几本没有看完呢,速度得加快了 今天看了第七章,Android动画效果一直是人家中十分重要的一部分,从早期的Android版本中,由于动画机制和绘图机制的不健全,Android的人机交互备受诟病,Android从4.X开始,特别是5.X,动画越来越完善了,Google也开始重视这一方面了,我们本章学习的主要内容有 Android视图动画' Android属性动画 Android动…
JVM学习笔记-第七章-虚拟机类加载机制 7.1 概述 Java虚拟机描述类的数据从Class文件加载到内存,并对数据进行校验.转换解析和初始化,最终形成可以被虚拟机直接使用的Java类型,这个过程被称为虚拟机的类加载机制. 两个约定: 后文直接对"类型"的描述都同时蕴含着类和接口的可能性 本章所提到的"Class文件"也并非特指某个存在于具体磁盘中的文件,而应当是一串二进制字节流. 7.2 类加载的时机 一个类型从被加载到虚拟机内存中开始,到卸载出内存为止,它的整…