RNN自学理解(一)】的更多相关文章

RNN对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,利用了RNN的这种能力,使深度学习模型在解决语音识别.语言模型.机器翻译以及时序分析等NLP领域的问题时有所突破. 参考文献1:史上最详细循环神经网络讲解(RNN/LSTM/GRU) - 知乎 (zhihu.com) 序列特性就是符合时间顺序,逻辑顺序,或者其他顺序 一个简单的例子告诉我们序列(Sequence)是很重要的: 第一句话:I like eating apple!(我喜欢吃苹果!) 第二句话:The Apple…
概述 LSTM是RNN的增强版,1.RNN能完成的工作LSTM也都能胜任且有更好的效果:2.LSTM解决了RNN梯度消失或爆炸的问题,进而可以具有比RNN更为长时的记忆能力.LSTM网络比较复杂,而恰好找到一篇不错的介绍文章,和课程的讲述范围差不多,所以这里摘下来(自己截图记录好麻烦),另外找到一篇推了公式的LSTM介绍,这个cs231n的课程并没有涉及,我暂时也不做这方面的研究,不过感觉内容不错,链接记下来以备不时之需. 本篇原文链接 RNN以及LSTM的介绍和公式梳理 按照老师的说法,LST…
让数据间的关联也被 NN 加以分析,我们人类是怎么分析各种事物的关联,?最基本的方式,就是记住之前发生的事情. 那我们让神经网络也具备这种记住之前发生的事的能力. 再分析 Data0 的时候, 我们把分析结果存入记忆. 然后当分析 data1 的时候, NN会产生新的记忆, 但是新记忆和老记忆是没有联系的. 我们就简单的把老记忆调用过来, 一起分析. 如果继续分析 更多的有序数据 , RNN就会把之前的记忆都累积起来, 一起分析.参考莫烦python.…
一份不错的作业3资料(含答案) RNN神经元理解 单个RNN神经元行为 括号中表示的是维度 向前传播 def rnn_step_forward(x, prev_h, Wx, Wh, b): """ Run the forward pass for a single timestep of a vanilla RNN that uses a tanh activation function. The input data has dimension D, the hidden…
https://blog.csdn.net/heisejiuhuche/article/details/73010638 这篇文章不涉及RNN的基本原理,只是从选择数据集开始,到最后生成文本,展示一个RNN使用实例的过程. 对于深度学习的应用者,最应该关注的除了算法和模型,还应该关注如何预处理好自己的数据,合理降噪,以及如何在数据量不同的情况下选择合理的超参,来达到最理想的训练结果. 在经过近三个月的学习之后,我打算使用Tensorflow,创建一个LSTM RNN模型,使用中文小说作为数据源,…
RNN(Recurrent Neural Networks)公式推导和实现 http://x-algo.cn/index.php/2016/04/25/rnn-recurrent-neural-networks-derivation-and-implementation/ 2016-04-25 分类:Deep Learning / NLP / RNN 阅读(6997) 评论(7)  本文主要参考wildml的博客所写,所有的代码都是python实现.没有使用任何深度学习的工具,公式推导虽然枯燥,…
RNN(Recurrent Neural Networks)公式推导和实现 http://x-algo.cn/index.php/2016/04/25/rnn-recurrent-neural-networks-derivation-and-implementation/ 2016-04-25 分类:Deep Learning / NLP / RNN 阅读(6997) 评论(7)  本文主要参考wildml的博客所写,所有的代码都是python实现.没有使用任何深度学习的工具,公式推导虽然枯燥,…
概述 RNN是递归神经网络,它提供了一种解决深度学习的另一个思路,那就是每一步的输出不仅仅跟当前这一步的输入有关,而且还跟前面和后面的输入输出有关,尤其是在一些NLP的应用中,经常会用到,例如在NLP中,每一个输出的Word,都跟整个句子的内容都有关系,而不仅仅跟某一个词有关.LSTM是RNN的一种升级版本,它的核心思想跟RNN是一样的,但是它透过一下方法避免了一些RNN的缺点.那么下面就逐步的解析一下RNN和LSTM的结构,然后分析一下它们的原理吧. RNN解析 要理解RNN,咱们得先来看一下…
一.RNN简介 1.)什么是RNN? RNN是一种特殊的神经网络结构,考虑前一时刻的输入,且赋予了网络对前面的内容的一种'记忆'功能. 2.)RNN可以解决什么问题? 时间先后顺序的问题都可以使用RNN来解决,比如:音乐,翻译,造句,语音识别,视频图像预测,语言处理等等,后来经过变种甚至可以达到CNN的作用 具体例子1 Car which.............,() ..........使用RNN可以预测括号里面的内容应该为 is/was. 2 学习莎士比亚写的诗词,然后进行模仿 3 你想为…
一.词汇表征 首先回顾一下之前介绍的单词表示方法,即one hot表示法. 如下图示,"Man"这个单词可以用 \(O_{5391}\) 表示,其中O表示One_hot.其他单词同理. 但是这样的表示方法有一个缺点,看是看下图中右侧给出的例子,比如给出这么一句不完整的话: **I want a glass of orange ___** 假设通过LSTM算法学到了空白处应该填"juice".但是如果将orange改成apple,即 **I want a glass…