一.原理和概念 1.回归 回归最简单的定义是,给出一个点集D,用一个函数去拟合这个点集.而且使得点集与拟合函数间的误差最小,假设这个函数曲线是一条直线,那就被称为线性回归:假设曲线是一条二次曲线,就被称为二次回归. 以下仅介绍线性回归的基本实现. 2.假设函数.误差.代价函数 参考 Machine Learning 学习笔记2 - linear regression with one variable(单变量线性回归) 最小化误差一般有两个方法:最小二乘法和梯度下降法 最小二乘法可以一步到位,…