Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is formed as follows: 21 22 23 24 25 20  7  8  9 10 19  6  1  2 11 18  5  4  3 12 17 16 15 14 13 It can be verified that the sum of the numbers on the diagona…
题意:给出一个 1001 × 1001 的矩阵,寻找每一圈四个顶点,并求出所有顶点的和 思路:只需要找到右上顶点数字的规律,然后每一圈四个顶点构成了一个等差数列,求个和即可 /************************************************************************* > File Name: euler028.cpp > Author: WArobot > Blog: http://www.cnblogs.com/WArobot/…
Starting with 1 and spiralling anticlockwise in the following way, a square spiral with side length 7 is formed. 37 36 35 34 33 32 31 38 17 16 15 14 13 30 39 18  5  4  3 12 29 40 19  6  1  2 11 28 41 20  7  8  9 10 27 42 21 22 23 24 25 26 43 44 45 46…
The smallest number expressible as the sum of a prime square, prime cube, and prime fourth power is 28. In fact, there are exactly four numbers below fifty that can be expressed in such a way: 28 = 22 + 23 + 24 33 = 32 + 23 + 24 49 = 52 + 23 + 24 47…
By using each of the digits from the set, {1, 2, 3, 4}, exactly once, and making use of the four arithmetic operations (+, −, *, /) and brackets/parentheses, it is possible to form different positive integer targets. For example, 8 = (4 * (1 + 3)) /…
If we take 47, reverse and add, 47 + 74 = 121, which is palindromic. Not all numbers produce palindromes so quickly. For example, 349 + 943 = 1292, 1292 + 2921 = 4213 4213 + 3124 = 7337 That is, 349 took three iterations to arrive at a palindrome. Al…
The 5-digit number, 16807=75, is also a fifth power. Similarly, the 9-digit number, 134217728=89, is a ninth power. How many n-digit positive integers exist which are also an nth power? 这种数字满足下面条件: 对于数位为x的数S=k^x 有 10^(x-1)<=k^x<=10^x-1 #include &quo…
A spider, S, sits in one corner of a cuboid room, measuring 6 by 5 by 3, and a fly, F, sits in the opposite corner. By travelling on the surfaces of the room the shortest "straight line" distance from S to F is 10 and the path is shown on the di…
For a number written in Roman numerals to be considered valid there are basic rules which must be followed. Even though the rules allow some numbers to be expressed in more than one way there is always a "best" way of writing a particular number…
Triangle, square, pentagonal, hexagonal, heptagonal, and octagonal numbers are all figurate (polygonal) numbers and are generated by the following formulae: Triangle   P3,n=n(n+1)/2   1, 3, 6, 10, 15, ... Square   P4,n=n2   1, 4, 9, 16, 25, ... Penta…