LeetCode-63. 不同路径 II】的更多相关文章

63. 不同路径 II 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为"Start" ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为"Finish"). 现在考虑网格中有障碍物.那么从左上角到右下角将会有多少条不同的路径? 网格中的障碍物和空位置分别用 1 和 0 来表示. 说明:m 和 n 的值均不超过 100. 示例 1: 输入: [ [0,0,0], [0,1,0], [0,0,0] ] 输出: 2…
描述 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为“Finish”). 现在考虑网格中有障碍物.那么从左上角到右下角将会有多少条不同的路径? 网格中的障碍物和空位置分别用 1 和 0 来表示. 说明:m 和 n 的值均不超过 100. 示例 1: 输入:[  [0,0,0],  [0,1,0],  [0,0,0]]输出: 2解释:3x3 网格的正中间有一个障碍物.从左上角到…
题目描述 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为“Finish”). 现在考虑网格中有障碍物.那么从左上角到右下角将会有多少条不同的路径? 网格中的障碍物和空位置分别用 1 和 0 来表示. 说明:m 和 n 的值均不超过 100. 示例 1: 输入: [   [0,0,0],   [0,1,0],   [0,0,0] ] 输出: 2 解释: 3x3 网格的正中间有一…
二维数组动态规划,还可以采用一维数组进行动态规划. class Solution { public: int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) { ].size(); ||n==) ; long dp[m][n]; ][n-]==) ; dp[m-][n-]=; ;j>=;j--){ dp[m-][j]=dp[m-][j+]*(-obstacleGrid[m-][j]); } ;i&…
Leetcode之动态规划(DP)专题-63. 不同路径 II(Unique Paths II) 初级题目:Leetcode之动态规划(DP)专题-62. 不同路径(Unique Paths) 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为“Finish”). 现在考虑网格中有障碍物.那么从左上角到右下角将会有多少条不同的路径? 网格中的障碍物和空位置分别用 1 和 0 来表…
63. 不同路径 II 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/unique-paths-ii/ 著作权归领扣网络所有.商业转载请联系官方授权,非商业转载请注明出处. 题目描述 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为"Start" ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为"Finish"). 现在考虑网格中有障碍物.那么…
目录 63.不同路径Ⅱ 题目 题解 63.不同路径Ⅱ 题目 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为"Start" ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为"Finish"). 现在考虑网格中有障碍物.那么从左上角到右下角将会有多少条不同的路径? 网格中的障碍物和空位置分别用 1 和 0 来表示. 输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]] 输出:2…
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in t…
题目: A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish'…
Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How many unique paths would there be? An obstacle and empty space is marked as 1 and 0 respectively in the grid. For example, There is one obstacle in the middl…