我的新发现:AVL树旋转的一个特性】的更多相关文章

关于AVL树旋转的代码网络上铺天盖地. 一些经典的实现方法如下: AVLTree SingleLeftRotation(AVLTree A) { AVLTree B = A->left; A->Left = B->Right; B->Right = A; A->Height = Max(GetHeight(A->Left), GetHeight(A->Right)) + ; B->Height = Max(GetHeight(B->Left), A-&…
什么是AVL树? AVL树是带有平衡条件的二叉查找树,一颗AVL树首先是二叉查收树(每个节点如果有左子树或右子树,那么左子树中数据小于该节点数据,右子树数据大于该节点数据),其次,AVL树必须满足平衡条件:每个节点的左子树和右子树的高度最多相差1(空树的高度定义为-1). 什么是旋转?AVL树为什么需要用到旋转? 由于AVL树本身的性质,当我们插入节点时,有可能会破坏AVL树的平衡性,使一棵树的左子树和右子树的高度相差大于1,此时就需要对树进行一些简单的修正来恢复其性质,这个修正的过程就叫做旋转…
AVL树平衡旋转详解 概述 AVL树又叫做平衡二叉树.前言部分我也有说到,AVL树的前提是二叉排序树(BST或叫做二叉查找树).由于在生成BST树的过程中可能会出现线型树结构,比如插入的顺序是:1, 2, 3, 4, 5, 6, 7..., n.在BST树中,比较理想的状况是每个子树的左子树和右子树的高度相等,此时搜索的时间复杂度是log(N).可是,一旦这棵树演化成了线型树的时候,这个理想的情况就不存在了,此时搜索的时间复杂度是O(N),在数据量很大的情况下,我们并不愿意看到这样的结果. 现在…
AVL 平衡树和树旋转 目录 AVL平衡二叉树 树旋转 代码实现 1 AVL平衡二叉树 AVL(Adelson-Velskii & Landis)树是一种带有平衡条件的二叉树,一棵AVL树其实是一棵左子树和右子树高度最多差1的二叉查找树.一棵树的不平衡主要是由于插入和删除的过程中产生的,此时则需要使用旋转来对AVL树进行平衡. AVL Tree: 0 _____|_____ | | 0 0 |___ ___|___ | | | 0 0 0 |__ | 0 插入引起不平衡主要有以下四种情况: In…
欢迎探讨,如有错误敬请指正 如需转载,请注明出处http://www.cnblogs.com/nullzx/ 1. AVL定义 AVL树是一种改进版的搜索二叉树.对于一般的搜索二叉树而言,如果数据恰好是按照从小到大的顺序或者从大到小的顺序插入的,那么搜索二叉树就对退化成链表,这个时候查找,插入和删除的时间都会上升到O(n),而这对于海量数据而言,是我们无法忍受的.即使是一颗由完全随机的数据构造成的搜索二叉树,从统计角度去分析,在进行若甘次的插入和删除操作,这个搜索二叉树的高度也不能令人满意.这个…
AVL树 在二叉查找树(BST)中,频繁的插入操作可能会让树的性能发生退化,因此,需要加入一些平衡操作,使树的高度达到理想的O(logn),这就是AVL树出现的背景.注意,AVL树的起名来源于两个发明者:Adel'son-Vel'skii 和 Landis. AVL树除了具备BST树的基本特征之外,还具有一个非常重要的特点: 如果将一个节点的左.右子树的高度差定义为该节点的平衡因子,则AVL树的任意一个节点的平衡因子只有0.-1.1 三种取值. 可以采用递归的方法来判断一个BST树是不是AVL树…
03-树1. List Leaves (25) Given a tree, you are supposed to list all the leaves in the order of top down, and left to right. Input Specification: Each input file contains one test case. For each case, the first line gives a positive integer N (<=10) wh…
数据结构与算法(一):基础简介 数据结构与算法(二):基于数组的实现ArrayList源码彻底分析 数据结构与算法(三):基于链表的实现LinkedList源码彻底分析 数据结构与算法(四):基于哈希表实现HashMap核心源码彻底分析 数据结构与算法(五):LinkedHashMap核心源码彻底分析 数据结构与算法(六):树与二叉树 数据结构与算法(七):赫夫曼树 数据结构与算法(八):二叉排序树 本文目录 一.二叉排序树性能问题 在上一篇中我们提到过二叉排序树构造可能出现的性能问题,比如我们…
概述:本文从排序二叉树作为引子,讲解了红黑树,最后把红黑树和AVL树做了一个比较全面的对比. 1 排序二叉树 排序二叉树是一种特殊结构的二叉树,可以非常方便地对树中所有节点进行排序和检索. 排序二叉树要么是一棵空二叉树,要么是具有下列性质的二叉树: ? 若它的左子树不空,则左子树上所有节点的值均小于它的根节点的值: ? 若它的右子树不空,则右子树上所有节点的值均大于它的根节点的值: ? 它的左.右子树也分别为排序二叉树. 下图显示了一棵排序二叉树:   对排序二叉树,若按中序遍历就可以得到由小到…