首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
(转载)最长递增子序列 O(NlogN)算法
】的更多相关文章
(转载)最长递增子序列 O(NlogN)算法
原博文:传送门 最长递增子序列(Longest Increasing Subsequence) 下面我们简记为 LIS. 定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则记录最小的那个最末元素.注意d中元素是单调递增的,下面要用到这个性质.首先len = 1,d[1] = a[1],然后对a[i]:若a[i]>d[len],那么len++,d[len] = a[i];否则,我们要从d[1]到d[len-1]中找到一个j,满足d[j-1]<a[i]<d[j],…
最长递增子序列 O(NlogN)算法
转自:点击打开链接 最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS. 排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5. 下面一步一步试着找出它. 我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列. 此外,我们用一个变量Len来记录现在最长算到多少了 首先,把d[1]有序地放到B里,令B[1] = 2,就是说当…
最长上升子序列O(nlogn)算法详解
最长上升子序列 时间限制: 10 Sec 内存限制:128 MB 题目描述 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.我们想知道此时最长上升子序列长度是多少? 输入 第一行一个整数N,表示我们要将1到N插入序列中,接下是N个数字,第k个数字Xk,表示我们将k插入到位置Xk(0<=Xk<=k-1,1<=k<=N) 输出 1行,表示最长上升子序列的长度是多少. 样例输入 3 0 0 2 样例输出 2 提示 100%的数据 n&l…
hdu 5773 最长递增子序列 (nlogn)+贪心
The All-purpose Zero Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 947 Accepted Submission(s): 453 Problem Description ?? gets an sequence S with n intergers(0 < n <= 100000,0<= S[i] &l…
最长递增子序列(LIS)
最长递增子序列(Longest Increasing Subsequence) ,我们简记为 LIS. 题:求一个一维数组arr[i]中的最长递增子序列的长度,如在序列1,-1,2,-3,4,-5,6,-7中,最长递增子序列长度为4,序列为1,2,4,6. 解法一:快速排序+LCS 刚开始做这道题的时候,由于之前做过几道LCS的题,于是最先想到的是快速排序+LCS的方法.这种方法解决了当时只计算单个case的问题,但是后来面对计算多个 case的问题的时候,第一次遇到Memory Lim…
LIS 最长递增子序列
一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个序列中的部分(不要求连续),这个就叫做公共子序列,然后最长公共子序列自然就是所有的子序列中最长的啦. public static int lcs(String s1, String s2) { int[][] dp = new int[s1.length()+1][s2.length()+1]; f…
算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列
出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的最长公共子串方法.最长公共子串用动态规划可实现O(n^2)的时间复杂度,O(n^2)的空间复杂度:还可以进一步优化,用后缀数组的方法优化成线性时间O(nlogn):空间也可以用其他方法优化成线性.3.LIS(最长递增序列)DP方法可实现O(n^2)的时间复杂度,进一步优化最佳可达到O(nlogn)…
最长递增子序列 LIS 时间复杂度O(nlogn)的Java实现
关于最长递增子序列时间复杂度O(n^2)的实现方法在博客http://blog.csdn.net/iniegang/article/details/47379873(最长递增子序列 Java实现)中已经做了实现,但是这种方法时间复杂度太高,查阅相关资料后我发现有人提出的算法可以将时间复杂度降低为O(nlogn),这种算法的核心思想就是替换(二分法替换),以下为我对这中算法的理解: 假设随机生成的一个具有10个元素的数组arrayIn[1-10]如[2, 3, 3, 4, 7, 3, 1, 6,…
【LeetCode】300.最长递增子序列——暴力递归(O(n^3)),动态规划(O(n^2)),动态规划+二分法(O(nlogn))
算法新手,刷力扣遇到这题,搞了半天终于搞懂了,来这记录一下,欢迎大家交流指点. 题目描述: 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度. 子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序.例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列. 解法一:暴力递归 不解释,先暴力搞一下.(时间复杂度O(n^3),不行) 1 class Solution { 2 public: 3 int l(vector<int>&…
算法实践--最长递增子序列(Longest Increasing Subsquence)
什么是最长递增子序列(Longest Increasing Subsquence) 对于一个序列{3, 2, 6, 4, 5, 1},它包含很多递增子序列{3, 6}, {2,6}, {2, 4, 5}, {1} 其中最长的递增子序列是{2, 4, 5} 问题:对于长度为N的矢量D,如何找到它的最长递增子序列 一个简单的算法 . 找到所有长度为i的子序列; //复杂度为(N!)/(i!)(N-i)! O(exp(N)) . 判断是否其中有一个为递增子序列} 动态规划算法 基本思想:将一个复杂问题…