update gate $z_t$: defines how much of the previous memory to keep around. \[z_t = \sigma ( W^z x_t+ U^z h_{t-1} )\] reset gate $r_t$: determines how to combine the new input with the previous memory. \[r_t = \sigma(W^r x_t + U^r h_{t-1} )\] Cell…
导读 本文讨论了最新爆款论文(Training RNNs as Fast as CNNs)提出的LSTM变种SRU(Simple Recurrent Unit),以及基于pytorch实现了SRU,并且在四个句子分类的数据集上测试了准确性以及与LSTM.CNN的速度对比. 一 .为什么要提出SRU? 深度学习的许多进展目前很多均是来源于增加的模型能力以及相关的计算,这经常涉及到更大.更深的深层神经网络,然而,虽然深层神经网络带来了明显的提升,但是也耗费了巨大的训练时间,特别是在语音识别以及机器翻…
Long short-term memory: make that short-term memory last for a long time. Paper Reference: A Critical Review of Recurrent Neural Networks for Sequence Learning Three Types of Gate Input Gate: Controls how much of the current input \(x_t\) and the pre…
从Visual Studio 2012开始,创建单元测试从右键菜单中消失了,这让开发者感觉很不习惯.其实创建单元测试并不是消失了,只是独立成一个扩展Unit Test Generator,单独安装这个扩展后,创建单元测试就又回来了. 选择工具>扩展和更新>搜索Unit Test Generator,然后安装扩展并重启Visual Studio.重启后可以从测试菜单下面找到Configure Unit Test Generator,可以配置要使用的单元测试框架,以及生成的测试项目名,类名,方法名…
Lesson 5 Sequence Models 这篇文章其实是 Coursera 上吴恩达老师的深度学习专业课程的第五门课程的课程笔记. 参考了其他人的笔记继续归纳的. 符号定义 假如我们想要建立一个能够自动识别句中人名地名等位置的序列模型,也就是一个命名实体识别问题,这常用于搜索引擎.命名实体识别系统可以用来查找不同类型的文本中的人名.公司名.时间.地点.国家名和货币名等等. 我们输入语句 "Harry Potter and Herminoe Granger invented a new s…
转载 - Recurrent Neural Networks Tutorial, Part 3 – Backpropagation Through Time and Vanishing Gradients 本文是 RNN入门教程 的第三部分. In the previous part of the tutorial we implemented a RNN from scratch, but didn’t go into detail on how Backpropagation Through…
http://deeplearning4j.org/lstm.html A Beginner’s Guide to Recurrent Networks and LSTMs Contents Feedforward Networks Recurrent Networks Backpropagation Through Time Vanishing and Exploding Gradients Long Short-Term Memory Units (LSTMs) Capturing Dive…
R2RT Written Memories: Understanding, Deriving and Extending the LSTM Tue 26 July 2016 When I was first introduced to Long Short-Term Memory networks (LSTMs), it was hard to look past their complexity. I didn’t understand why they were designed the…