Gated Recurrent Unit (GRU)公式简介】的更多相关文章

update gate $z_t$: defines how much of the previous memory to keep around. \[z_t = \sigma ( W^z x_t+ U^z h_{t-1}  )\] reset gate $r_t$: determines how to combine the new input with the previous memory. \[r_t = \sigma(W^r x_t  + U^r h_{t-1}  )\] Cell…
                               Gated Recurrent Unit (GRU) Outline                             Background                   GRU Network                   GRU vs. LSTM                   Experiment                   References Background A gated recurre…
GRU(Gated Recurrent Unit) 更新过程推导及简单代码实现 RNN GRU matlab codes RNN网络考虑到了具有时间数列的样本数据,但是RNN仍存在着一些问题,比如随着时间的推移,RNN单元就失去了对很久之前信息的保存和处理的能力,而且存在着gradient vanishing问题. 所以有些特殊类型的RNN网络相继被提出,比如LSTM(long short term memory)和GRU(gated recurrent unit)(Chao,et al. 20…
导读 本文讨论了最新爆款论文(Training RNNs as Fast as CNNs)提出的LSTM变种SRU(Simple Recurrent Unit),以及基于pytorch实现了SRU,并且在四个句子分类的数据集上测试了准确性以及与LSTM.CNN的速度对比. 一 .为什么要提出SRU? 深度学习的许多进展目前很多均是来源于增加的模型能力以及相关的计算,这经常涉及到更大.更深的深层神经网络,然而,虽然深层神经网络带来了明显的提升,但是也耗费了巨大的训练时间,特别是在语音识别以及机器翻…
SRU(Simple Recurrent Unit),单循环单元 src/nnet/nnet-recurrent.h 使用Tanh作为非线性单元 SRU不保留内部状态 训练时,每个训练序列以零向量开始 可以用作'以句为单位的'训练以及多流训练 nnet3/nnet3-simple-recurrent-unit.h 具体是添加了一个组件: <SRUStreams> 训练的神经网络被称为CLDNN 脚本支持平均随机梯度下降(ASGD,Asynchronous Stochastic Gradient…
MathJax与LaTex公式简介 (转载) PS: 原文链接写的非常好!!! 博主写这篇文章,一是为了防止原链接失效,二是在cnblogs上测试MathJax; 本文从math.stackexchange.com上名为MathJax basic tutorial and quick reference的问题翻译而来,并有所改动.主要讲述了如何使用MathJax和相关的Latex语法. MathJax简介 MathJax是一款运行在浏览器中的开源数学符号渲染引擎,使用MathJax可以方便的在浏…
Long short-term memory: make that short-term memory last for a long time. Paper Reference: A Critical Review of Recurrent Neural Networks for Sequence Learning Three Types of Gate Input Gate: Controls how much of the current input \(x_t\) and the pre…
从Visual Studio 2012开始,创建单元测试从右键菜单中消失了,这让开发者感觉很不习惯.其实创建单元测试并不是消失了,只是独立成一个扩展Unit Test Generator,单独安装这个扩展后,创建单元测试就又回来了. 选择工具>扩展和更新>搜索Unit Test Generator,然后安装扩展并重启Visual Studio.重启后可以从测试菜单下面找到Configure Unit Test Generator,可以配置要使用的单元测试框架,以及生成的测试项目名,类名,方法名…
链接地址:https://www.cnblogs.com/linxd/p/4955530.html…
循环神经网络 简介 循环神经网络(Recurrent Neural Networks, RNN) 是一类用于处理序列数据的神经网络.之前的说的卷积神经网络是专门用于处理网格化数据(例如一个图像)的神经网络,而循环神经网络专门用于处理序列数据(例如\(x^{(1)},x^{(2)},···,x^{(T)},\))的神经网络. 应用场景 一些要求处理序列输入的任务,例如: 语音识别(speech recognition) 时间序列预测(time series prediction) 机器翻译(mac…
Recurrent Neural Networks(RNN) 人类并不是每时每刻都从一片空白的大脑开始他们的思考.在你阅读这篇文章时候,你都是基于自己已经拥有的对先前所见词的理解来推断当前词的真实含义.我们不会将所有的东西都全部丢弃,然后用空白的大脑进行思考.我们的思想拥有持久性. 传统的神经网络并不能做到这点,看起来也像是一种巨大的弊端.例如,假设你希望对电影中的每个时间点的时间类型进行分类.传统的神经网络应该很难来处理这个问题--使用电影中先前的事件推断后续的事件. RNN 解决了这个问题.…
本章共两部分,这是第二部分: 第十四章--循环神经网络(Recurrent Neural Networks)(第一部分) 第十四章--循环神经网络(Recurrent Neural Networks)(第二部分) 14.4 深度RNN 堆叠多层cell是很常见的,如图14-12所示,这就是一个深度RNN. 图14-12 深度RNN(左),随时间展开(右) 在TensorFlow中实现深度RNN,需要创建多个cell并将它们堆叠到一个MultiRNNCell中.下面的代码创建了三个完全相同的cel…
本节主要介绍在TensorFlow中实现LSTM以及GRU网络. 一 LSTM网络 Long Short Term 网络—— 一般就叫做 LSTM ——是一种 RNN 特殊的类型,可以学习长期依赖信息.LSTM 由 Hochreiter & Schmidhuber (1997) 提出,并在近期被 Alex Graves 进行了改良和推广.在很多问题,LSTM 都取得相当巨大的成功,并得到了广泛的使用. LSTM 通过刻意的设计来避免长期依赖问题.记住长期的信息在实践中是 LSTM 的默认行为,而…
  RNN 循环神经网络,是非线性动态系统,将序列映射到序列,主要参数有五个:[Whv,Whh,Woh,bh,bo,h0][Whv,Whh,Woh,bh,bo,h0],典型的结构图如下: 和普通神经网络一样,RNN有输入层输出层和隐含层,不一样的是RNN在不同的时间t会有不同的状态,其中t-1时刻隐含层的输出会作用到t时刻的隐含层. 参数意义是: WhvWhv:输入层到隐含层的权重参数,WhhWhh:隐含层到隐含层的权重参数,WohWoh:隐含层到输出层的权重参数,bhbh:隐含层的偏移量,bo…
李飞飞徒弟Karpathy的著名博文The Unreasonable Effectiveness of Recurrent Neural Networks阐述了RNN(LSTM)的各种magic之处,并提供code实现简单的词生成. 原文地址;http://karpathy.github.io/2015/05/21/rnn-effectiveness/ Recurrent Neural Networks sequence Vanilla Neural Networks (and also Con…
小筆記. Tensorflow 裡實作的 GRU 跟 Colah's blog 描述的 GRU 有些不太一樣. 所以做了一下 TF 的 GRU 結構. 圖比較醜, 我盡力了- XD TF 的 GRU 結構 u 可以想成是原來 LSTM 的 forget gate, 而 c 表示要在 memory cell 中需要記住的內容. 這個要記住的內容簡單講是用一個 gate (r) 來控制之前的 state 有多少比例保留, concate input 後做 activation transform 後…
参考1 参考2 参考3 1. 为什么选择序列模型 序列模型能够应用在许多领域,例如: 语音识别 音乐发生器 情感分类 DNA序列分析 机器翻译 视频动作识别 命名实体识别 这些序列模型都可以称作使用标签数据(X,Y)作为训练集的监督式学习,输入x和输出y不一定都是序列模型.如果都是序列模型的话,模型长度不一定完全一致. 2. Notation(标记) 下面以 命名实体识别 为例,介绍序列模型的命名规则.示例语句为: Harry Potter and Hermione Granger invent…
概述 LSTM是RNN的增强版,1.RNN能完成的工作LSTM也都能胜任且有更好的效果:2.LSTM解决了RNN梯度消失或爆炸的问题,进而可以具有比RNN更为长时的记忆能力.LSTM网络比较复杂,而恰好找到一篇不错的介绍文章,和课程的讲述范围差不多,所以这里摘下来(自己截图记录好麻烦),另外找到一篇推了公式的LSTM介绍,这个cs231n的课程并没有涉及,我暂时也不做这方面的研究,不过感觉内容不错,链接记下来以备不时之需. 本篇原文链接 RNN以及LSTM的介绍和公式梳理 按照老师的说法,LST…
1. 摘要 对于RNN解决了之前信息保存的问题,例如,对于阅读一篇文章,RNN网络可以借助前面提到的信息对当前的词进行判断和理解,这是传统的网络是不能做到的.但是,对于RNN网络存在长期依赖问题,比如看电影的时候,某些细节需要依赖很久以前的一些信息,而RNN网络并不能很好的保存很久之前的信息,随着时间间隔不断增大,RNN网络会丧失学习到很远的信息能力,也就是说记忆容量是有限的.例如,对于阅读一本书,从头到尾一字不漏的阅读,肯定是越远的东西忘得越多.所以引入了LSTM网络,对于LSTM来解决梯度消…
本宝宝又转了一篇博文,但是真的很好懂啊: 写在前面:知乎上关于lstm能够解决梯度消失的问题的原因: 上面说到,LSTM 是为了解决 RNN 的 Gradient Vanish 的问题所提出的.关于 RNN 为什么会出现 Gradient Vanish,上面已经介绍的比较清楚了,本质原因就是因为矩阵高次幂导致的.下面简要解释一下为什么 LSTM 能有效避免 Gradient Vanish. 对于 LSTM,有如下公式 模仿 RNN,我们来计算 ,有 &lt;img src="https:…
  在上一篇文章中,介绍了 卷积神经网络(CNN)的算法原理,CNN在图像识别中有着强大.广泛的应用,但有一些场景用CNN却无法得到有效地解决,例如: 语音识别,要按顺序处理每一帧的声音信息,有些结果需要根据上下文进行识别: 自然语言处理,要依次读取各个单词,识别某段文字的语义 这些场景都有一个特点,就是都与时间序列有关,且输入的序列数据长度是不固定的. 而经典的人工神经网络.深度神经网络(DNN),甚至卷积神经网络(CNN),一是输入的数据维度相同,另外是各个输入之间是独立的,每层神经元的信号…
1 Recurrent Neural Networks(循环神经网络) 1.1 序列数据 输入或输出其中一个或两个是序列构成.例如语音识别,自然语言处理,音乐生成,感觉分类,dna序列,机器翻译,视频状态识别,名称识别. 1.2 Notation(符号) \(x ^ { ( i ) < t > }\)表示第\(i\)个训练样本输入的第\(t\)个元素 \(T ^ { ( i ) < t > } _ x\)表示第\(i\)个训练样本输入的长度为\(t\) \(y ^ { ( i )…
Lesson 5 Sequence Models 这篇文章其实是 Coursera 上吴恩达老师的深度学习专业课程的第五门课程的课程笔记. 参考了其他人的笔记继续归纳的. 符号定义 假如我们想要建立一个能够自动识别句中人名地名等位置的序列模型,也就是一个命名实体识别问题,这常用于搜索引擎.命名实体识别系统可以用来查找不同类型的文本中的人名.公司名.时间.地点.国家名和货币名等等. 我们输入语句 "Harry Potter and Herminoe Granger invented a new s…
目录 1 Recurrent Entity Network Introduction 模型构建 Input Encoder Dynamic Memory Output Model 总结 2 hierarchical Memory Networks MIPS 3 Hierarchical Memory Networks for Answer Selection on Unknown Words 4 Gated End-to-End Memory Networks 参考 1 Recurrent En…
论文地址:PACDNN:一种用于语音增强的相位感知复合深度神经网络 引用格式:Hasannezhad M,Yu H,Zhu W P,et al. PACDNN: A phase-aware composite deep neural network for speech enhancement[J]. Speech Communication,2022,136:1-13. 摘要 目前,利用深度神经网络(DNN)进行语音增强的大多数方法都面临着一些限制:它们没有利用相位谱中的信息,同时它们的高计算…
转载 - Recurrent Neural Networks Tutorial, Part 3 – Backpropagation Through Time and Vanishing Gradients 本文是 RNN入门教程 的第三部分. In the previous part of the tutorial we implemented a RNN from scratch, but didn’t go into detail on how Backpropagation Through…
http://deeplearning4j.org/lstm.html A Beginner’s Guide to Recurrent Networks and LSTMs Contents Feedforward Networks Recurrent Networks Backpropagation Through Time Vanishing and Exploding Gradients Long Short-Term Memory Units (LSTMs) Capturing Dive…
R2RT   Written Memories: Understanding, Deriving and Extending the LSTM Tue 26 July 2016 When I was first introduced to Long Short-Term Memory networks (LSTMs), it was hard to look past their complexity. I didn’t understand why they were designed the…
LSTM 网络 Long Short Term 网络—— 一般就叫做 LSTM ——是一种 RNN 特殊的类型,可以学习长期依赖信息.LSTM 由 Hochreiter & Schmidhuber (1997) 提出,并在近期被 Alex Graves 进行了改良和推广.在很多问题,LSTM 都取得相当巨大的成功,并得到了广泛的使用. LSTM 通过刻意的设计来避免长期依赖问题.记住长期的信息在实践中是 LSTM 的默认行为,而非需要付出很大代价才能获得的能力! 所有 RNN 都具有一种重复神经…
神经结构进步.GPU深度学习训练效率突破.RNN,时间序列数据有效,每个神经元通过内部组件保存输入信息. 卷积神经网络,图像分类,无法对视频每帧图像发生事情关联分析,无法利用前帧图像信息.RNN最大特点,神经元某些输出作为输入再次传输到神经元,可以利用之前信息. xt是RNN输入,A是RNN节点,ht是输出.对RNN输入数据xt,网络计算得输出结果ht,某些信息(state,状态)传到网络输入.输出ht与label比较得误差,用梯度下降(Gradient Descent)和Back-Propag…