洛谷P1033 自由落体 题解】的更多相关文章

题目链接:https://www.luogu.org/problemnew/show/P1033 呵呵,真的学好物理比较重要,前些年卡在这题上的我今天终于会做了,可恶的自由落体(也许是我太弱了吧 ) 分析: 这道题似乎并不用特意在乎精度,只是提醒大家一点:能全用double尽量都用,这样能避免中间转换是不必要的精度问题. 公式的推导相信大家都会吧,这里不再赘述,也会在代码中详细说明. 下面见代码 代码: #include<cstdio> #include<cmath> using…
P1033 自由落体 题目描述 在高为 H 的天花板上有 n 个小球,体积不计,位置分别为 0,1,2,….n-1.在地面上有一个小车(长为 L,高为 K,距原点距离为 S1).已知小球下落距离计算公式为 d=1/2*g*(t^2),其中 g=10,t 为下落时间.地面上的小车以速度 V 前进. 如下图: 小车与所有小球同时开始运动,当小球距小车的距离 <= 0.0001(感谢Silver_N修正) 时,即认为小球被小车接受(小球落到地面后不能被接受). 请你计算出小车能接受到多少个小球. 输入…
P1033 自由落体 题目描述 在高为 H 的天花板上有 n 个小球,体积不计,位置分别为 0,1,2,….n-1.在地面上有一个小车(长为 L,高为 K,距原点距离为 S1).已知小球下落距离计算公式为 d=1/2*g*(t^2),其中 g=10,t 为下落时间.地面上的小车以速度 V 前进. 如下图: 小车与所有小球同时开始运动,当小球距小车的距离 <= 0.0001(感谢Silver_N修正) 时,即认为小球被小车接受(小球落到地面后不能被接受). 请你计算出小车能接受到多少个小球. 输入…
P1033 自由落体 题目描述 在高为 H 的天花板上有 n 个小球,体积不计,位置分别为 0,1,2,….n-1.在地面上有一个小车(长为 L,高为 K,距原点距离为 S1).已知小球下落距离计算公式为 d=1/2*g*(t^2),其中 g=10,t 为下落时间.地面上的小车以速度 V 前进. 如下图: 小车与所有小球同时开始运动,当小球距小车的距离 <= 0.0001(感谢Silver_N修正) 时,即认为小球被小车接受(小球落到地面后不能被接受). 请你计算出小车能接受到多少个小球. 输入…
题目描述 在高为 H 的天花板上有 n 个小球,体积不计,位置分别为 0,1,2,….n-1.在地面上有一个小车(长为 L,高为 K,距原点距离为 S1).已知小球下落距离计算公式为 d=1/2*g*(t^2),其中 g=10,t 为下落时间.地面上的小车以速度 V 前进. 如下图: 小车与所有小球同时开始运动,当小球距小车的距离 <= 0.0001(感谢Silver_N修正) 时,即认为小球被小车接受(小球落到地面后不能被接受). 请你计算出小车能接受到多少个小球. 输入输出格式 输入格式:…
题目描述 在高为 H 的天花板上有 n 个小球,体积不计,位置分别为 0,1,2,….n-1.在地面上有一个小车(长为 L,高为 K,距原点距离为 S1).已知小球下落距离计算公式为 d=1/2*g*(t^2),其中 g=10,t 为下落时间.地面上的小车以速度 V 前进. 如下图: 小车与所有小球同时开始运动,当小球距小车的距离 <= 0.0001(感谢Silver_N修正) 时,即认为小球被小车接受(小球落到地面后不能被接受). 请你计算出小车能接受到多少个小球. 输入输出格式 输入格式:…
洛谷P2832 行路难 分析+题解代码[玄学最短路] 题目背景: 小X来到了山区,领略山林之乐.在他乐以忘忧之时,他突然发现,开学迫在眉睫 题目描述: 山区有n座山.山之间有m条羊肠小道,每条连接两座山,只能单向通过,并会耗费小X一定时间. 小X现在在1号山,他的目的是n号山,因为那里有火车站. 然而小X的体力是有限的.他每通过一条羊肠小道,就会变得更疲劳,导致他通过任意一条羊肠小道的时间都增加1. 输入格式: 第一行两个数,n,m 第2行到第m+1行,每行3个数A,B,C,表示A.B之间有一条…
[洛谷P3960]列队题解 题目链接 题意: Sylvia 是一个热爱学习的女孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. Sylvia 所在的方阵中有 n×m 名学生,方阵的行数为 n ,列数为 m . 为了便于管理,教官在训练开始时,按照从前到后,从左到右的顺序给方阵中的学生从 1 到 n×m 编上了号码(参见后面的样例).即:初始时,第 i 行第 j 列 的学生的编号是 (i−1)×m+j . 然而在练习方阵的时候,经常会有学生因为各种各样的事情需要离…
洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) 均为正整数). 输入格式 输入共 \(n + 2\) 行. 第一行包含 \(2\) 个整数 \(n, m\) ,每两个整数之间用一个空格隔开. 接下来的 \(n+1\) 行每行包含一个整数,依次为 \(a_0,a_1,a_2\ldots a_n\). 输出格式 第一行输出方程在 \([1,m]\)…
洛谷P1577 切绳子题解 题目描述 有N条绳子,它们的长度分别为Li.如果从它们中切割出K条长度相同的 绳子,这K条绳子每条最长能有多长?答案保留到小数点后2位(直接舍掉2为后的小数). 输入输出格式 输入格式: 第一行两个整数N和K,接下来N行,描述了每条绳子的长度Li. 输出格式: 切割后每条绳子的最大长度. 输入输出样例 输入样例#1: 4 11 8.02 7.43 4.57 5.39 输出样例#1: 2.00 说明 对于100%的数据 0<Li<=100000.00 0<n&l…