Pandas Series 与 DataFrame 数据创建】的更多相关文章

>>> import pandas as pd >>> import numpy as np >>> print(np.__version__), print(pd.__version__) 1.14.3 0.23.0 Series 从 numpy 数组创建,并指定索引值 >>> s1 = pd.Series(np.random.rand(4), index=['a', 'b', 'c', 'd']) >>> s1…
1,创建Series 1.1,通过iterable创建Series Series接收参数是Iterable,不能是Iterator pd.Series(Iterable) 可以多加一个index参数,index可以接收Iterator或者Iterable: >>> pd.Series(('a', 'b'), index=iter(range(2))) 0 a 1 b dtype: object 1.2,通过字典创建Series key是索引: >>> pd.Series…
Pandas 通过 drop 函数删除 DataFrarne 数据,语法为: 例如,删除陈聪明(行标题)的成绩: import pandas as pd datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]] indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"] columns = ["语文…
pandas大家用的都很多,像我这种用的不够熟练,也不够多的就只能做做笔记,尽量留下点东西吧. 筛选行: a. 按照列的条件筛选 df = pandas.DataFrame(...) # supposing it has 3 columns: a, b and c df[(df['a'] > 0) & (df['b'] < 0) | df['c'] > 0] b. 按照索引的条件筛选 needed_seq=[1,2,3,6] needed_df = df.loc[needed_s…
需要将两个DataFrame进行横向拼接: 对 A_DataFrame 拼接一列数据: 数据样例如下: 将右侧source_df中的 “$factor” 列拼接到左侧qlib_df中,但左侧数据是分钟级的数据,右侧是“day”级的数据. 需要将“day”级数据的 “$factor” 填充到对应一天内的分钟级里面: 首先将二者的日期作为索引: 然后对其进行合并(pd.concat()) source_df = pd.concat([source_df, qlib_df['$factor']], a…
DataFrame是一个表格型数据结构,与Series不同的是,DataFrame可以含有一组或者有序的列,每列可以使不同的值的类型,它可以被看做成Series的字典.…
pandas-21 Series和Dataframe的画图方法 ### 前言 在pandas中,无论是series还是dataframe都内置了.plot()方法,可以结合plt.show()进行很方便的画图. Series.plot() 和 Dataframe.plot()参数 data : Series kind : str 'line' : line plot (default) 'bar' : vertical bar plot 'barh' : horizontal bar plot…
pandas-01 Series()的几种创建方法 pandas.Series()的几种创建方法. import numpy as np import pandas as pd # 使用一个列表生成一个Series s1 = pd.Series([1, 2, 3, 4]) print(s1) ''' 0 1 1 2 2 3 3 4 dtype: int64 ''' # 返回所有的索引 print(s1.index) ''' RangeIndex(start=0, stop=4, step=1)…
pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包 pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的, 导入如下: from pandas import Series,DataFrame import pandas as pd import numpy as np Series可以理解为一个一维的数组,只是index可以自己改动.类似于定长的有序字典,有Index和value.传入一个list[]/tuple(),就会自动生成一个S…
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构:Series 和 DataFrame. 二.Series Series 是一个一维数组对象 ,类似于 NumPy 的一维 array.它除了包含一组数据还包含一组索引,所以可以把它理解为一组带索引的数组. 将 Python 数组转换成 Series 对象: 将 Python 字典转换成 Serie…