首先,SVM和LR(Logistic Regression)都是分类算法.SVM通常有4个核函数,其中一个是线性核,当使用线性核时,SVM就是Linear SVM,其实就是一个线性分类器,而LR也是一个线性分类器,这是两者的共同之处. 不同之处在于,第一,LR只要求计算出一个决策面,把样本点分为两类就行了,不要求分得有多好:而Linear SVM要求决策面距离两个类的点的距离要最大. 第二,Linear SVM只考虑边界线附近的点,而LR要考虑整个样本所有的点,如果增加一些样本点,只要这些样本点…