Linear SVM和LR的区别和联系】的更多相关文章

首先,SVM和LR(Logistic Regression)都是分类算法.SVM通常有4个核函数,其中一个是线性核,当使用线性核时,SVM就是Linear SVM,其实就是一个线性分类器,而LR也是一个线性分类器,这是两者的共同之处. 不同之处在于,第一,LR只要求计算出一个决策面,把样本点分为两类就行了,不要求分得有多好:而Linear SVM要求决策面距离两个类的点的距离要最大. 第二,Linear SVM只考虑边界线附近的点,而LR要考虑整个样本所有的点,如果增加一些样本点,只要这些样本点…
对于异常数据,SVM比LR更好 SVM的优缺点: 优点:1.提供非常精确的分类器 2.更少的过拟合(因为有L2正则化项0.5||w||2),对噪声数据更加鲁棒(因为损失函数的原因) 缺点:1.SVM是一个二分类器,要多分类器需要采用1vs1或者1vs all ,(尼莫... 2.SVM对大规模训练样本难以实施,compute expensive ,thus run low…
两种方法都是常见的分类算法,从目标函数来看,区别在于逻辑回归采用的是logistical loss,svm采用的是hinge loss.这两个损失函数的目的都是增加对分类影响较大的数据点的权重,减少与分类关系较小的数据点的权重.SVM的处理方法是只考虑support vectors,也就是和分类最相关的少数点,去学习分类器.而逻辑回归通过非线性映射,大大减小了离分类平面较远的点的权重,相对提升了与分类最相关的数据点的权重.两者的根本目的都是一样的.此外,根据需要,两个方法都可以增加不同的正则化项…
(搬运工) 逻辑回归(LR)与SVM的联系与区别 LR 和 SVM 都可以处理分类问题,且一般都用于处理线性二分类问题(在改进的情况下可以处理多分类问题,如LR的Softmax回归用在深度学习的多分类中) 区别: 1.LR 是 参数模型,SVM是非参数模型,(svm中的 linear 和 rbf 是指线性可分和不可分的问题) 2.从目标函数来看,逻辑回归的目标是使得经验风险最小化,采用的是logistical loss,svm则是最大化分类间隔,使用的损失函数是合页损失( hinge损失):当样…
先看数据: 特征如下: Time Number of seconds elapsed between each transaction (over two days) numeric V1 No description provided numeric V2 No description provided numeric V3 No description provided numeric V4 No description provided numeric V5 No description…
从这一节开始学习机器学习技法课程中的SVM, 这一节主要介绍标准形式的SVM: Linear SVM 引入SVM 首先回顾Percentron Learning Algrithm(感知器算法PLA)是如何分类的,如下图,找到一条线,将两类训练数据点分开即可: PLA的最后的直线可能有很多条,那到底哪条好呢?好坏的标准则是其泛化性能,即在测试数据集上的正确率,如下,下面三条直线都能正确的分开训练数据,那到底哪个好呢?SVM就是解决这个问题的. SVM求解 直觉告诉我们最右的要好一些,因为测试数据的…
LR & SVM 的区别 相同点 LR和SVM都是分类算法. 如果不考虑核函数,LR和SVM都是线性分类算法,也就是说他们的分类决策面都是线性的. LR和SVM都是监督学习算法. LR和SVM都是判别模型. 不同点 损失函数不一样 支持向量机只考虑局部的边界线附近的点,而逻辑回归考虑全局(远离的点对边界线的确定也起作用). 在解决非线性问题时,支持向量机采用核函数的机制,而LR通常不采用核函数的方法在计算决策面时,SVM算法里只有少数几个代表支持向量的样本参与了计算,也就是只有少数几个样本需要参…
一.LR LR,DT,SVM都有自身的特性,首先来看一下LR,工业界最受青睐的机器学习算法,训练.预测的高效性能以及算法容易实现使其能轻松适应工业界的需求.LR还有个非常方便实用的额外功能就是它并不会给出离散的分类结果,而是给出该样本属于各个类别的概率(多分类的LR就是softmax),可以尝试不同的截断方式来在评测指标上进行同一模型的性能评估,从而得到最好的截断分数.LR不管是实现还是训练或者预测都非常高效,很轻松的handle大规模数据的问题(同时LR也很适合online learning)…
1.将公式中的distance具体化 将$w_0$单独抽出作为$b$,$w=(w_1,...,w_n),x=(x_1,...,x_n)$ 则分割平面为:$w^Tx+b=0$ A.证明w为法向量     设两点$x',x''$都在平面上,所以有     $w^Tx'=w^Tx''=-b$     $w^T(x'-x'')=0$     可以知道$x'-x''$是平面上的一个向量,$w$和它垂直,所以为法向量 B.距离表示为x-x'到法向量的投影,同时使用第一个限制条件     $distance=…
问题引入 下面的三个超平面都起到分类的效果,哪个最好? 答案显然是第三个.为什么? 直觉上,如果现在我们有个测试点,非常靠近右下角的那个红叉叉,也就是说这个点的特征与那个红叉叉非常接近,这时候,我们希望我们的分类器能够将这个测试点划分为与红叉叉相同的类. 也就是说,我们希望,找到的超平面能够远离所有的点,也就是要最小化超平面到离它最近的那个点的距离. 于是,用公式表达就是: 第一行是我们要求的东西,最大margin(margin的定义在第二个约束条件给出)的分割超平面.实质上我们要求的是使得ma…