Python计算特征值与特征向量案例 例子1 import numpy as np A = np.array([[3,-1],[-1,3]]) print('打印A:\n{}'.format(A)) a, b = np.linalg.eig(A) print('打印特征值a:\n{}'.format(a)) print('打印特征向量b:\n{}'.format(b)) 打印A: [[ 3 -1] [-1 3]] 打印特征值a: [4. 2.] 打印特征向量b: [[ 0.70710678 0.…
Obvious,最小特征值对应的特征向量为平面的法向 这个问题还有个关键是通过python求协方差矩阵的特征值和特征向量,np.linalg.eig()方法直接返回了特征值的向量和特征向量的矩阵 scipy.linalg.eigh()方法可以对返回的特征值和特征向量进行控制,通过eigvals参数,可以控制,比如我要返回最小的特征值,和其对应的特征向量,那么就是eigvals(0:0),在升序的情况下.还是很有用的. scipy.linalg.eigh(a, b=None, lower=True…
import numpy as np lis = np.mat([[1,2,3],[3,4,5],[4,5,6]]) print(np.linalg.inv(lis)) # 求矩阵的逆矩阵 [[-1.2009599e+16 3.6028797e+16 -2.4019198e+16] [ 2.4019198e+16 -7.2057594e+16 4.8038396e+16] [-1.2009599e+16 3.6028797e+16 -2.4019198e+16]] print(lis.trans…
[前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征值和特征向量(Characteristic Vectors)求解算法——雅克比算法(Jacobi).Jacobi算法的原理和实现可以参考[https://blog.csdn.net/zhouxuguang236/article/details/40212143].通过Jacobi算法可以以任意精度近…
矩阵的特征值和特征向量是线性代数以及矩阵论中很重要的一个概念.在遥感领域也是经经常使用到.比方多光谱以及高光谱图像的主成分分析要求解波段间协方差矩阵或者相关系数矩阵的特征值和特征向量. 依据普通线性代数中的概念,特征值和特征向量能够用传统的方法求得,可是实际项目中一般都是用数值分析的方法来计算,这里介绍一下雅可比迭代法求解特征值和特征向量. 雅克比方法用于求实对称阵的所有特征值.特征向量. 对于实对称阵 A,必有正交阵 U.使 U TA U = D. 当中 D 是对角阵,其主对角线元 li 是…
#include <stdio.h> #include <math.h> #include <stdlib.h> #define M 3 //方阵的行数 列数 #define ε0 0.00000001//ε0为要求的精度 #define N 100000//最大迭代次数 //函数预声明 ], int m, int n);//矩阵的打印 void printVector(double a[], int m);//向量的打印 double dotVector(double…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5585271.html 参考文档:mkl官方文档 lapack_int LAPACKE_sgeev(int matrix_layout, char jobvl, char jobvr, lapack_int n, float* a, lapack_int lda, float* wr, float* wi, float* vl, lapack_int ldvl, float* vr, lapack_i…
本文部分内容转自 https://www.cnblogs.com/chaosimple/p/3182157.html 一.统计学概念 二.为什么需要协方差 三.协方差矩阵 注:上述协方差矩阵还需要除以除以(n-1).MATLAB使用cov函数计算协方差时自动除以了(n-1),opencv使用calcCovarMatrix函数计算后还需要手动除以(n-1) 协方差具体计算 以学生成绩举例:有5名学生,参加数学.英语.美术考试,得分如图 1.计算均值矩阵M 均值是对每一列求平均值:means=[66…
在MATLAB中,计算矩阵A的特征值和特征向量的函数是eig(A),常用的调用格式有 5种:(1) E=eig(A):求矩阵A的全部特征值,构成向量E. 想求最大特征值用:max(eig(A))就好了.(2) [V,D]=eig(A):求矩阵A的全部特征值,构成对角阵D,并求A的特征向量构成 V的列向量.(3) [V,D]=eig(A,'nobalance'):与第2种格式类似,但第2种格式中先对A作相似 变换后求矩阵A的特征值和特征向量,而格式3直接求矩阵A的特征值和特征向量. (4) E=e…
一.复习几个矩阵的基本知识 1. 向量 1)既有大小又有方向的量成为向量,物理学中也被称为矢量,向量的坐标表示a=(2,3),意为a=2*i + 3*j,其中i,j分别是x,y轴的单位向量. 2)向量的点乘:a · b 公式:a · b = b · a = |a| * |b| * cosθ = x1 * x2 + y1 * y2点乘又叫向量的内积.数量积,是一个向量a和它在另一个向量b上的投影的长度的乘积,结果是一个标量: 如果两个向量的点乘是零, 那么这两个向量正交. 2)向量的叉乘:a X …