首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Solution -「ABC 213G」Connectivity 2
】的更多相关文章
Solution -「ABC 213G」Connectivity 2
\(\mathcal{Description}\) Link. 给定简单无向图 \(G=(V,E)\),点的编号从 \(1\) 到 \(|V|=n\).对于 \(k=2..n\),求 \(H=(V,E'\subseteq E)\) 的个数,使得 \(1\) 与 \(k\) 连通. \(n\le17\). \(\mathcal{Solution}\) 一种在状压 DP 子集枚举时的去重 trick√ 令 \(f(S)\) 表示仅考虑点集 \(S\) 的导出子图时,使得点集 \(…
Solution -「ABC 219H」Candles
\(\mathcal{Description}\) Link. 有 \(n\) 支蜡烛,第 \(i\) 支的坐标为 \(x_i\),初始长度为 \(a_i\),每单位时间燃烧变短 \(1\) 直到长度为 \(0\).你从 \(0\) 位置出发,每次可以向左或向右走 \(1\) 单位,走到一个蜡烛的位置可以吹熄蜡烛.求最多能保留的蜡烛长度之和. \(n\le300\). \(\mathcal{Solution}\) 和 甲虫 这题比较像,可以说是相同思路的不同实现方法.问题的核心自…
Solution -「ABC 215H」Cabbage Master
\(\mathcal{Description}\) Link. 有 \(n\) 种颜色的,第 \(i\) 种有 \(a_i\) 个,任意两球互不相同.还有 \(m\) 个盒子,每个盒子可以被放入某些颜色的小球,且第 \(i\) 个盒子要求放入总数不少于 \(b_i\).你要拿走尽量少的球,使得要求无法被满足,并求出此时拿球方案数模 \(998244353\) 的值. \(n\le20\),\(m\le10^4\). \(\mathcal{Solution}\) 如果保持清醒地做这…
Solution -「ABC 213H」Stroll
\(\mathcal{Description}\) Link. 给定一个含 \(n\) 个结点 \(m\) 条边的简单无向图,每条边的边权是一个常数项为 \(0\) 的 \(T\) 次多项式,求所有从 \(1\) 结点出发回到 \(1\) 结点的环路中,边权之积的 \(T\) 次项系数和. \(n,m\le10\),\(T\le4\times10^4\). \(\mathcal{Solution}\) 令 \(f_i(x)=\sum_{j\ge0}f_{i,j}x^j\),从 \…
Solution -「ABC 217」题解
D - Cutting Woods 记录每一个切割点,每次求前驱后驱就好了,注意简单判断一下开闭区间. 考场上采用的 FHQ_Treap 无脑莽. #include <cstdio> #include <cstdlib> using namespace std; typedef long long LL; LL Max(LL x, LL y) { return x > y ? x : y; } LL Min(LL x, LL y) { return x < y ? x…
Solution -「ARC 104E」Random LIS
\(\mathcal{Description}\) Link. 给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率随机.求 \(\{b_n\}\) 中 LIS(最长上升子序列)的期望长度.对 \(10^9+7\) 取模. \(n\le6\),\(a_i\le10^9\). \(\mathcal{Solution}\) 欺负这个 \(n\) 小得可爱,直接 \(\mathcal O(n!)\) 枚举 \(…
Solution Set -「ABC 217」
大家好屑兔子又来啦! [A - Lexicographic Order] 说个笑话,\(\color{black}{\text{W}}\color{red}{\text{alkingDead}}\) 和 \(\color{black}{\text{O}}\color{red}{\text{neInDark}}\) 在这题各罚了两次时,我因为不会所以没有被罚. [B - AtCoder Quiz]不会. [C - Inverse of Permutation]不会. [D - Cuttin…
Solution -「ARC 110E」Shorten ABC
\(\mathcal{Description}\) Link. 给定长度为 \(n\),包含 A, B, C 三种字符的字符串 \(S\),定义一次操作为将其中相邻两个不相同的字符替换为字符集中不同于这两个字符的另一种字符.求任意次操作后得到的不同字符串个数,答案对 \(10^9+7\) 取模. \(n\le10^6\). \(\mathcal{Solution}\) 我们希望探究此种替换操作的结合性,trick 为将字符集替换为数字集,将操作表达为数字间的运算.对于本题,令 A…
Solution -「CTS 2019」「洛谷 P5404」氪金手游
\(\mathcal{Description}\) Link. 有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \(p_{i,k}\).依照此规则确定权值后,你不停抽卡,每次抽到第 \(i\) 张卡牌的概率正比于 \(w_i\),直到所有卡都被抽过至少一次. 此后,记 \(t_i\) 表示第 \(i\) 张牌第一次被抽到的时间.给定 \(n-1\) 条形如 \(\lang u,v\rang\) 的限制,表示…
Solution -「BZOJ 3812」主旋律
\(\mathcal{Description}\) Link. 给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\) 的数量,使得 \(H\) 是强连通图.答案模 \((10^9+7)\). \(n\le15\). \(\mathcal{Solution}\) 仙气十足的状压容斥. 令 \(f(S)\) 表示仅考虑点集 \(S\) 的导出子图时,使得 \(S\) 强连通的选边方案数,那么 \(f(V…