题解 P3941 入阵曲】的更多相关文章

题解 观察数据范围,可以 \(\mathcal O(n^2m^2)\) 暴力计算,而加上特殊性质,则可以骗到 \(75pts\) 正解: 我们发现,在一维情况下,\(\mod k\) 相同的前缀和相减,一定是 \(k\) 的倍数.那么我们就可以统计一个不同 \(\mod k\) 的值出现了几次,\(\mathcal O(n)\) 求解. 扩展到二维,做法是将一段连续的行合并成一行,ppt 上叫压行.再按一行的做法做,复杂度 \(\mathcal O(n^2m)\) 注意:记得开 long lon…
[luogu]P3941 入阵曲 题目描述 小 F 很喜欢数学,但是到了高中以后数学总是考不好. 有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识算法竞赛的 时候,觉得整个世界都焕然一新.这世界上怎么会有这么多奇妙的东西?曾经自己觉得难以 解决的问题,被一个又一个算法轻松解决. 小 F 当时暗自觉得,与自己的幼稚相比起来,还有好多要学习的呢. 一年过去了,想想都还有点恍惚. 他至今还能记得,某天晚上听着入阵曲,激动地睡不着觉,写题写到鸡鸣时分都兴奋不 已.也许,这就是热血吧.…
\(\color{#0066ff}{ 题目描述 }\) 小 F 很喜欢数学,但是到了高中以后数学总是考不好. 有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识算法竞赛的 时候,觉得整个世界都焕然一新.这世界上怎么会有这么多奇妙的东西?曾经自己觉得难以 解决的问题,被一个又一个算法轻松解决. 小 F 当时暗自觉得,与自己的幼稚相比起来,还有好多要学习的呢. 一年过去了,想想都还有点恍惚. 他至今还能记得,某天晚上听着入阵曲,激动地睡不着觉,写题写到鸡鸣时分都兴奋不 已.也许,这就…
题目背景 丹青千秋酿,一醉解愁肠. 无悔少年枉,只愿壮志狂. 入阵曲 题解在代码里. #include<iostream> #include<cstdio> #include<cstring> using namespace std; long long a[1000][1000],sum[1000][1000],ans=0,tot,n,m,k,flag[1100000],b[1110000]; int main() { cin>>n>>m>…
题目背景 pdf题面和大样例链接:http://pan.baidu.com/s/1cawM7c 密码:xgxv 丹青千秋酿,一醉解愁肠. 无悔少年枉,只愿壮志狂. 题目描述 小 F 很喜欢数学,但是到了高中以后数学总是考不好. 有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识算法竞赛的 时候,觉得整个世界都焕然一新.这世界上怎么会有这么多奇妙的东西?曾经自己觉得难以 解决的问题,被一个又一个算法轻松解决. 小 F 当时暗自觉得,与自己的幼稚相比起来,还有好多要学习的呢. 一年过…
题目传送门 题目背景 丹青千秋酿,一醉解愁肠.无悔少年枉,只愿壮志狂. 题目描述 小$F$很喜欢数学,但是到了高中以后数学总是考不好.有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识算法竞赛的时候,觉得整个世界都焕然一新.这世界上怎么会有这么多奇妙的东西?曾经自己觉得难以解决的问题,被一个又一个算法轻松解决.小$F$当时暗自觉得,与自己的幼稚相比起来,还有好多要学习的呢.一年过去了,想想都还有点恍惚.他至今还能记得,某天晚上听着入阵曲,激动地睡不着觉,写题写到鸡鸣时分都兴奋不已…
丹青千秋酿,一醉解愁肠. 无悔少年枉,只愿壮志狂 题目 题目描述 小 F 很喜欢数学,但是到了高中以后数学总是考不好. 有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识算法竞赛的 时候,觉得整个世界都焕然一新.这世界上怎么会有这么多奇妙的东西?曾经自己觉得难以 解决的问题,被一个又一个算法轻松解决. 小 F 当时暗自觉得,与自己的幼稚相比起来,还有好多要学习的呢. 一年过去了,想想都还有点恍惚. 他至今还能记得,某天晚上听着入阵曲,激动地睡不着觉,写题写到鸡鸣时分都兴奋不 已.…
题目传送门 这道题也是今年湖南集训队Day8的第一题,昨天洛谷的公开赛上又考了一遍,来发个记录(其实是因为五月天,另外两道题分别是将军令和星空,出这次题目的人肯定同为五迷(✪㉨✪)) 话不多说.先理解下题意,给定一个n*m的矩阵,要求出能被k整除的子矩阵个数. 题意很简单,但是矩阵这方面的题目一直是我最大的软肋,所以昨天做的时候就直接交了个O( n^2 m^2 )的暴力,然后运气还可以,水了60分(据说暴力只有55?)然后在网上看到某集训队大犇的解题报告,搞懂了这题的正解做法. 那位大犇的做法是…
题目传送门 题目大意:给你一个\(n\)*\(m\)的矩阵,每个位置都有一个数,求有多少不同的子矩阵使得矩阵内所有数的和是\(k\)的倍数. 数据范围给的非常友好233,期望得到的暴力分:75分.前12个点可以用\(O(n^4)\)算法水过,对于\(<=400\)的有特殊性质2的数据,我们还可以尝试苟一下,开始用了一个什么鬼方法(?),其实我们只要枚举所有可能的矩形面积判断一下是否满足条件再加上这种矩形面积的所有可能数就行啦. #include<cstdio> #include<a…
嘟嘟嘟 这道题我觉得跟最大子矩阵那道题非常像,都是O(n4)二维前缀和暴力很好想,O(n3)正解需要点转化. O(n4)暴力就不说啦,二维前缀和,枚举所有矩形,应该能得55分. O(n3)需要用到降维的思想.先考虑这么个问题:对于一个序列,求区间和是k的倍数的区间个数.有点想法的暴力就是前缀和预处理,然后O(n2)枚举.那么能不能不枚举呢?观察会发现,任意两个 mod k余数相同的前缀和相减得到的区间,都能被k整除.有了这一点,这道题就变成求余数相同的前缀有多少对了.那么开一个数组dp[i]记录…