1.图是什么? 本文给出得图的定义为:A graph represents the relations (edges) between a collection of entities (nodes). 即:图表示实体(节点)集合之间的关系(边). 其中 $V$  表示顶点,$E$  表示边,$U$  表示全局.可以看到每一个定义后面都有一个 attributes,这意味着我们不能只关注图的一个结构信息,还应该关注属性信息,比如节点的邻居数,边的权重,最长路径等等. $V$:节点信息(节点标识.…
论文信息 论文标题:Soft-mask: Adaptive Substructure Extractions for Graph Neural Networks论文作者:Mingqi Yang, Yanming Shen, Heng Qi, Baocai Yin论文来源:2021, WWW论文地址:download 论文代码:download 1 Abstract GNN 应该能够有效地提取与任务相关的结构,并且对无关的部分保持不变. 本文提出的解决方法:从原始图的子图序列中学习图的表示,以更好…
Paper Information Title:<How Powerful are Graph Neural Networks?>Authors:Keyulu Xu, Weihua Hu, J. Leskovec, S. JegelkaSources:2019, ICLRPaper:DownloadCode:DownloadOthers:2421 Citations, 45 References Abstract GNN 目前主流的做法是递归迭代聚合一阶邻域表征来更新节点表征,如 GCN 和…
3 Streaming Graph Neural Networks link:https://dl.acm.org/doi/10.1145/3397271.3401092 Abstract 本文提出了一种新的动态图神经网络模型DGNN,它可以随着图的演化对动态信息进行建模.特别是,该框架可以通过捕获: 1.边的序列信息, 2.边之间的时间间隔, 3.信息传播耦合性 来不断更新节点信息. Conclusion 在本文中,提出了一种用于动态图的新图神经网络架构DGNN.该架构有两个组件构成:更新组件…
论文信息 论文标题:Towards Deeper Graph Neural Networks论文作者:Meng Liu, Hongyang Gao, Shuiwang Ji论文来源:2020, KDD论文地址:download 论文代码:download 1 Introduction 问题引入: 图卷积是领域聚合的代表,这些邻域聚合方法中的一层只考虑近邻,当进一步深入以实现更大的接受域时,性能会下降,这种性能恶化归因于过平滑问题( over-smoothing),即当感受域增大时,在传播和更新过…
论文信息 论文标题:Local Augmentation for Graph Neural Networks论文作者:Songtao Liu, Hanze Dong, Lanqing Li, Tingyang Xu, Yu Rong, Peilin Zhao, Junzhou Huang, Dinghao Wu论文来源:2021, arXiv论文地址:download 论文代码:download 1 Introduction 现有的方法侧重于从全局的角度来增强图形数据,主要分为两种类型: str…
论文信息 论文标题:GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural Networks论文作者:Tianxiang Zhao, Xiang Zhang, Suhang Wang论文来源:2021, WSDM论文地址:download 论文代码:download 1 Introduction 节点分类受限与不同类的节点数量不平衡,本文提出过采样方法解决这个问题. 图中类不平衡的例子:   图中:每个蓝色节点…
论文信息 论文标题:How Powerful are K-hop Message Passing Graph Neural Networks论文作者:Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, Muhan Zhang论文来源:2022,arXiv论文地址:download 论文代码:download 1 Introduction 本文工作: 1)正式区分了 K-hop 邻居的两个不同的内核,它们在以前的工作中经常被滥用.一种是基于图扩散(…
论文信息 论文标题:Understanding Attention and Generalization in Graph Neural Networks论文作者:Boris Knyazev, Graham W. Taylor, Mohamed R. Amer论文来源:2019,NeurIPS论文地址:download 论文代码:download 1 Introduction 本文关注将注意力 GNNs 推广到更大.更复杂或有噪声的图.作者发现在某些情况下,注意力机制的影响可以忽略不计,甚至有害…
Introduction to Deep Neural Networks Neural networks are a set of algorithms, modeled loosely after the human brain, that are designed to recognize patterns. They interpret sensory data through a kind of machine perception, labeling or clustering raw…