SVM实现邮件分类】的更多相关文章

首先学习一下svm分类的使用. 主要有以下步骤: Loading and Visualizing Dataj Training Linear SVM Implementing Gaussian Kernel Training SVM with RBF Kernel 选择最优的C, sigma参数 画出边界线 线性keneral实现 C = 1; model = svmTrain(X, y, C, @linearKernel, 1e-3, 20); visualizeBoundaryLinear(…
一. 前言 由于最近有一个邮件分类的工作需要完成,研究了一下基于SVM的垃圾邮件分类模型.参照这位作者的思路(https://blog.csdn.net/qq_40186809/article/details/88354825),使用trec06c这个公开的垃圾邮件语料库(https://plg.uwaterloo.ca/~gvcormac/treccorpus06/)作为数据进行建模.并对代码进行优化,提升训练速度. 工作过程如下: 1,数据预处理,提取每一封邮件的内容,进行分词,数据清洗.…
近日,对近些年在NLP领域很火的BERT模型进行了学习,并进行实践.今天在这里做一下笔记. 本篇博客包含下列内容: BERT模型简介 概览 BERT模型结构 BERT项目学习及代码走读 项目基本特性介绍 代码走读&要点归纳 基于BERT模型实现垃圾邮件分类 TREC06语料库 基准模型介绍 BERT迁移模型实现 一.BERT模型简介 1.概览 BERT模型的全称是Bidirectional Encoder Representations from Transformer,即Transformer…
Atitit 贝叶斯算法的原理以及垃圾邮件分类的原理 1.1. 最开始的垃圾邮件判断方法,使用contain包含判断,只能一个关键词,而且100%概率判断1 1.2. 元件部件串联定律1 1.3. 垃圾邮件关键词串联定律 表格法可视化贝叶斯定律1 1.4. 十一.最终的计算公式2 1.5. .这时我们还需要一个用于比较的门槛值.Paul Graham的门槛值是0.9,概率大于0.9,2 1.1. 文氏图,可以很清楚地看到在事件B发生的情况下,事件A发生的概率就是P(A∩B)除以P(B). 1.2…
以下是利用卷积神经网络对某一个句子的处理结构图 我们从上图可知,将一句话转化成一个矩阵.我们看到该句话有6个单词和一个标点符号,所以我们可以将该矩阵设置为7行,对于列的话每个单词可以用什么样的数值表示.我们可以将其转化成向量的形式.所以其为7 * 5的矩阵,其次因为它不是图片,所以不存在通道一说,说白了就是7 * 5 * 1.其次在选择filter的时候,至少要以一个单词为单位.region就是设置几个单词为单位. 1.思路 对于中文垃圾邮件的分类,在CNN部分同前面介绍的英文垃圾邮件分类完全相…
目录 朴素贝叶斯(垃圾邮件分类) 邮箱训练集下载地址 模块导入 文本预处理 遍历邮件 训练模型 测试模型 朴素贝叶斯(垃圾邮件分类) 邮箱训练集下载地址 邮箱训练集可以加我微信:nickchen121 模块导入 import re import os from jieba import cut from itertools import chain from collections import Counter import numpy as np from sklearn.naive_baye…
贝叶斯公式描写叙述的是一组条件概率之间相互转化的关系. 在机器学习中.贝叶斯公式能够应用在分类问题上. 这篇文章是基于自己的学习所整理.并利用一个垃圾邮件分类的样例来加深对于理论的理解. 这里我们来解释一下朴素这个词的含义: 1)各个特征是相互独立的,各个特征出现与其出现的顺序无关: 2)各个特征地位同等重要: 以上都是比較强的如果 以下是朴素贝叶斯分类的流程: 这样我们就分别求出了这些特征各个类别下的条件概率,非常直观的,对于各个特征的联合概率分布就是各个条件概率进行相乘.如上式.可是这样会出…
1. 数据集说明 trec06c是一个公开的垃圾邮件语料库,由国际文本检索会议提供,分为英文数据集(trec06p)和中文数据集(trec06c),其中所含的邮件均来源于真实邮件保留了邮件的原有格式和内容,下载地址:https://plg.uwaterloo.ca/~gvcormac/treccorpus06/ 由于数据集分散在各个文件中,为了方便我将正样本和负样本分别放在了ham_data和spam_data文件夹中(处女座的强迫症) 正样本数:21766 负样本数:42854 中文停用词:c…
从前面SVM学习中可以看出来,SVM是一种典型的两类分类器.而现实中要解决的问题,往往是多类的问题.如何由两类分类器得到多类分类器,就是一个值得研究的问题. 以文本分类为例,现成的方法有很多,其中一劳永逸的方法,就是真的一次性考虑所有样本,并求解一个多目标函数的优化问题,一次性得到多个分类面,就像下图这样: 多个超平面把空间划分为多个区域,每个区域对应一个类别,给一篇文章,看它落在哪个区域就知道了它的分类. 只可惜这种算法还基本停留在纸面上,因为一次性求解的方法计算量实在太大,大到无法实用的地步…
SVM本身是一个二值分类器 SVM算法最初是为二值分类问题设计的,当处理多类问题时,就需要构造合适的多类分类器. 目前,构造SVM多类分类器的方法主要有两类 (1)直接法,直接在目标函数上进行修改,将多个分类面的参数求解合并到一个最优化问题中,通过求解该最优化问题“一次性”实现多类分类.这种方法看似简单,但其计算复杂度比较高,实现起来比较困难,只适合用于小型问题中: (2)间接法,主要是通过组合多个二分类器来实现多分类器的构造,常见的方法有one-against-one和one-against-…