与Logistuc Regression相比,SVM是一种优化的分类算法,其动机是寻找一个最佳的决策边界,使得从决策边界与各组数据之间存在margin,并且需要使各侧的margin最大化.比较容易理解的是,从决策边界到各个training example的距离越大,在分类操作的差错率就会越小.因此,SVM也叫作Large Margin Classifier. 最简单的情况是,在二维平面中的,线性可分情况,即我们的training set可以用一条直线来分割称为两个子集,如下图所示.而在图中我们可…